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ARTICLE INFO ABSTRACT

MSC: We propose a sequential Monte Carlo algorithm for parameter learning when the studied model exhibits
62M20 random discontinuous jumps in behaviour. To facilitate the learning of high dimensional parameter sets,
62F12 such as those associated to neural networks, we adopt the emerging framework of differentiable particle
Keywords: filtering, wherein parameters are trained by gradient descent. We design a new differentiable interacting
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multiple model particle filter to be capable of learning the individual behavioural regimes and the model
which controls the jumping simultaneously. In contrast to previous approaches, our algorithm allows control
of the computational effort assigned per regime whilst using the probability of being in a given regime to
guide sampling. Furthermore, we develop a new gradient estimator that has a lower variance than established
approaches and remains fast to compute, for which we prove consistency. We establish new theoretical
results of the presented algorithms and demonstrate superior numerical performance compared to the previous
state-of-the-art algorithms.

1. Introduction the previous time-step. We show that, under the reformulation of the
non-Markov switching model that we develop in this paper, the former
problem is a special case of the latter.

In many real world settings, the average number of time-steps a

There has been longstanding interest in Bayesian filtering for sys-
tems exhibiting discontinuous behavioural jumps, typically modelled
by ascribing the system a finite number of distinct and indexed regimes.
Two systems frequently modelled in this way include financial markets
reacting swiftly to economic news [1,2], and tracked targets suddenly
changing course or acceleration [3-6]. Much of this existing work is
focused on Markov switching systems where the probability of jumping
is allowed to depend only on the index of the current regime.

Particle filters [7,8] are a class of Monte-Carlo algorithms for esti-
mating the posterior distribution of a Markov hidden signal given noisy
observations of it. In the regime-switching setting, if the regime index

system spends in each regime can be large. This is typically modelled
by taking switches to be rare events. Most particle filtering algorithms
naturally focus computation on more likely regions of the state space.
With a restricted particle count, overtime this can result in the num-
ber of particles in all regimes apart from the current one going to
zero; so when jumps do occur they are not detected [6,11]. It has
become common practice, therefore, in regime switching filters to set
the number of particles assigned per regime at each time-step to be

is modelled as a Markov chain, one may treat it as a component of the
hidden signal in a particle filter [3].

In [9] the authors developed the regime switching particle filter
(RSPF), extending the approach in [3] to systems where the regime
index can depend arbitrarily on its past. They achieved this by having
every particle keep a memory of its entire regime history, similar to
the fixed-lag smoother of [10]. The interacting multiple model particle
filter IMMPF), introduced in [5], assumes the regime index is a Markov
chain, but allows it to depend on the latent state as well as the index at

equal on average. This is achieved in [9] by proposing the regime
index uniformly across all regime choices. However, this ignores the
probability of each particle adopting the given regime.

The IMMPF takes a more principled approach, it combines the
resampling and regime selection steps to improve sampling efficiency.
However, the IMMPF is not strictly a particle filter in the sense studied
in [12-14]. To the best of our knowledge, no proof of consistency for
the IMMPF exists in the literature.
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Differentiable particle filters (DPFs) [15-17] are an emerging class
of particle filters designed in such a way that the algorithm is end-to-
end differentiable, so that one may obtain accurate gradient estimates
for use in gradient based parameter inference. The motivating use case
for DPFs is to learn model components as flexible neural networks,
typically when the prior knowledge on the functional form of the
underlying model is of poor quality. In this case, other parameter
inference paradigms fail. For example, the EM algorithm [18] requires
a specific functional form of the model for the maximisation step
to be closed-form; and both derivative-free optimisation and particle
Markov chain Monte Carlo [19] do not scale well to large dimensional
parameter spaces.

The first effort to address switching models in a DPF framework
is [20], with the regime switching differentiable bootstrap particle
filter (RSDBPF). However, the RSDBPF is only capable of learning
the individual regimes. The meta-model that controls the switching,
henceforth the ‘switching dynamic’, is required to be known a priori.
During inference, the RSDBPF runs a RSPF so does not sample particles
as efficiently as the IMMPF. Furthermore, it has an asymptotically
biased gradient update.

There are few approaches in the literature that operate under an
unknown switching dynamic and, to the best of our knowledge, none
in the more challenging parameter estimation framework. In [21], a
related problem is studied: the system may belong to one of a set of
candidate regimes but the regime may not change during a trajectory.
Their strategy is to run a separate filter for each regime but assign
computational effort, i.e. the number of particles, in proportion to the
posterior probability that the system is in each regime. This strategy
was generalised in [22], where the particles are permitted to occa-
sionally exchange between regimes. However, this algorithm cannot
provide a consistent estimator in the general case where the regime
can switch at any time-step.

In this paper we propose the differentiable multiple model particle
filter (DIMMPF), the first DPF approach to filtering regime-switching
models where neither the individual models nor the switching dynamic
are known. The DIMMPF can be seen as an IMMPF that can return
statistically consistent estimates of the gradient of its filtering mean
with respect to the model parameters.

The main contributions of this work,”? can be summarised as follows:

We present the DIMMPF, a novel algorithm for learning to esti-
mate the filtering mean of a general regime-switching model.
We develop a neural network architecture to parameterise a
general unknown switching dynamic.

We prove that the DIMMPF generates consistent estimators of
filtering means and their gradients. Entailing a derivation of, to
the best of our knowledge, the first proof that filtering estimates
of the IMMPF are consistent.

We evaluate the DIMMPF on a set of simulated data experiments
and demonstrate state-of-the-art performance.

The remainder of this article is structured as follows. In Section 2 we
introduce the problem statement. Section 3 reviews the relevant back-
ground for the paper and explains how this paper builds on previous
work. Section 4 develops our algorithmic contribution, the DIMMPEF.
Section 5 describes the experiments and presents the results. We con-
clude in Section 6.

2 A limited version of this work was presented by the authors in the
conference paper [23] which presents a simpler version of our methodology
that has a biased gradient update. The conference paper contains limited
discussion, no theoretical insight, and a more basic set of experiments.
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2. Problem statement

We define a state-space model (SSM) to describe a discrete time
system of two parallel processes: a latent Markov process, {fc,}; and
their associated observations { fz,}, where ¢ is the discrete time index.
Every observation j, is conditionally independent of all other variables
at previous time steps given %,. Algebraically, an SSM is defined as:

%0~ My (%) ,

R~ M (21 %1) @
Y~ G (3 1%),

for the set of states %, € X, the set of observations y, € Y, the random

measure M, and the probability kernels M and G.

We consider an SSM where at each time-step the latent and obser-
vation processes may, together, adopt one of a set of N, regimes. To
model this system, we introduce two additional latent variables: the
regime index, k, € K := {1,2, ,Nreg}; and a cache that acts as a
memory of previous regimes, r, € R C R%, where d, is the chosen
dimension of the regime cache. We illustrate this system graphically in
Fig. 1 and define it algebraically as:

ro = Rg (ko) -
Fix1 = R (k,,r,_l) )
ko ~ K{ (ko) -
kisy ~ K’ (kt | rt—l) ’ €2
Xo ~ Mg (xO | kO) s
Xi>1 ™ M’ (xt | Xt—lskr) ,
Ve~ G° (Yr | xt,k,) >

where we have made explicit any dependence on the model parameters
6. R) and R’ are deterministic functions, K and K’ are categori-
cal distributions. To avoid confusion with the generic SSM Eq. (1),
SSM model components and variables are denoted by a circumflex (%)
whereas components of the studied regime switching model, Eq. (2)
are not. For notational simplicity we do not make explicit any time
dependence of the model components; by treating the time as a series
of constants, time dependence can be introduced without change to the
theoretical analysis.

This paper addresses the problem of accurately estimating filtering
means, E? [x, | y,.,]. Unlike previous work [9,20,22], our formulation
allows all of the dynamic model, Mg, MY; the observation model, G?;
and the switching dynamic, Rf, R, K{, K, to depend simultaneously
on the learned parameters . However, we require that the number of
regimes N, be given; efficiently determining N, is left for future
work.

Problem analysis

The advantage of our formulation is that the joint hidden process
{x; k;r,} is explicitly Markov. Identifying {x,.kr,} with {%,} and
{y;} with {9} it is clear that our model (2) is a special case of an
SSM (1). Existing results and algorithms concerning SSMs, i.e.particle
filters, can be applied directly in our setting.

It is instructive to demonstrate a pair of special cases of our model.
Taking

Rg (kO) = ko, R (kr”x—l) =k, 3

one recovers the popular Markov switching model [1,4,24]. Alterna-
tively taking

Rg (ko) = {ko} R (kpyrimy) = ({k b uric) \ {kiec ) 4

for some fixed 7, one obtains the model with perfect memory of its
regimes for a fixed lag, similar to the strategy of [25]. Taking z to be
larger than the trajectory length gives the model with perfect regime
memory, as considered by [9,20].

It is well known that, as a consequence of the resampling step,
particle filters suffer from path degeneracy [26], wherein late-time
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Yr Observations

T Latent State

ko Regime Index
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Fig. 1. Bayesian network representation of the considered regime switching model.

particles are descended from only a small subset of the early time
particles. In the perfect memory formulation this means that late-time
particles will form a poor quality sample of the early time regime
indices, so keeping full trajectories is not useful. R’ can be thought
of a caching function that keeps the useful information in the regime
history. Moreover, myriad practical challenges arise in trying to store
and utilise a linearly growing amount of information.

Since the regime may take only one of N, values for each time-
step, at time ¢, |R| < Nr’ggl, with |R| being the cardinality of the set
R. However, an R% representation is more convenient for a neural
network implementation.

3. Background
3.1. The interacting multiple model particle filter

Our algorithm may be seen as differentiable variant of the IMMPF [5],
indeed, we show in Theorem 2 that the two are exactly equivalent on
the forward pass. In [5] the IMMPF is formulated for regime switching
systems where the system state and regime-index, {x,, k, }, jointly form
a Markov process. Endowing the state with the auxiliary variable r, it is
clear that our problem, Eq. (2), is a special case of the problem solved
by the IMMPF. For clarity, we present the IMMPF as applied to Eq. (2).

In filters for regime switching systems, to avoid the sample col-
lapsing to a single regime, it is standard to propose the regime index
uniformly [6,11]. The obvious strategy [9] to filter our system, Eq. (2),
would therefore be to run a particle filter with hidden state {x,, k,,r}
and observations y,. Where k, is proposed uniformly. However, doing
so is agnostic to each particles probability of being in its sampled state.

The IMMPF [5] approach is to modify the resampling step as so: for
every particle at time 7, to first choose a regime index, k,, then resample
a particle at time 7— 1 with weight equal to an estimate of their posterior
probability conditional on being propagated to regime k, at time . The
other components of the hidden state {x,,r,} can be propagated in the
usual way. Under this approach, the resampling probabilities depend
on the value of the latent state at the next time-step, as such it is not
possible to express this algorithm as a sequential importance sampling—
resampling particle filter [8,13]. In practice we deterministically choose
there to be an equal number of particles in each regime, but for the
sake of exposition we focus on the case that the regime indices are
uniformly sampled. We justify this simplification by the observation
that the deterministic case can be seen as a deterministic sample of
the mixture model resulting from the uniform case, and so is unbiased
given the population at the previous time-step [27].

In Algorithm 1 we introduce a very general sequential Monte-Carlo
algorithm that includes both the usual particle filter and the IMMPF
as special cases. Consider repeatedly importance sampling a series of
target, u (%), and proposal, 4, (,), distributions that may depend on
the sample at the previous time-step. We refer to this algorithm as

Algorithm 1 Sequential Multiple Importance Sampling. All operations
indexed by n should be repeated for all n € {1,..., N}. c is a, typically
unknown, constant.

Input: proposal mixtures 4, 4, time extent T

particle count N
1 R0~ 49 (20);

2 wp « M; Ho (%) is defined in Eq. (5).
()

3 @ e =0

0 bl w ’

4: fort=1to T do

5 &)~ 4 (%))

6 w' e« c%; Hys1 (%) is defined in Eq. (6).
S

8: end for

9: return fcé]]\f w(l)ITV w(‘):TN.

multiple sequential importance sampling (SMIS), since 5, and 4,5,
will be mixtures in all cases of interest.
For filtering, ideally the target is the posterior.

Hy (’A‘t) =p (’Acx | )A’O:t) : (5)
However, at t+ > 0 the true posterior is not typically available so we
replace it by an empirical approximation:
Als 1o N —n (s |s
ﬁf G (yr | xt) Zn:l w;l_]M (xt | x:'_l)
P (91 90:0-1)

We only consider SMIS algorithms with the target distribution given in
Egs. (5) and (6).
For example, we recover the generic bootstrap particle filter with

(6)

Hex1 (’A‘r)

N
L~y def —n ~ an
(’lBoot)zzl (%) = sz—lM (%1 xr—l) ’ @
n=1
and the IMMPF with uniform index sampling, for model (2), with

(AIMMPF),Zl ()Afr) = (AIMMPF),Zl (xnkrsrt)
B K (k1) MO (5 150 B ()
{or

N -
Nreg E/:] wi_lKg (kr | r:_l)
where 6, (-) is density of the Dirac measure at z. Note that Eq. (8) cannot
be reduced to a mixture density over the particles, motivating the use
of the more general SMIS framework.

def

; (8

Theorem 1. Defining F, (y) 4 Zflvzl wiy (fc,"), and P, (y) to be true

posterior mean of some test function y : X — R, respectively. Then under
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the sufficient set of assumptions that |y | is upper bounded, u, is absolutely
continuous with respect to A,, and the Radon-Nikodym derivative % is
t

finitely upper bounded:

2
Fow)— Py () , ©

as N — oo, implying that F, (v) is a weakly consistent estimator of P, (y).
Proof. See Appendix B for a proof. []

We are not the first to formalise particle filtering as a SMIS proce-
dure [28,29], see also [30] for a tutorial that introduces the well-known
auxiliary particle filter [31] as an SMIS procedure. We extend Theorem
1 to an equivalent result for the deterministic regime sampling case in
Corollary B.1.

3.2. Differentiable particle filtering

A diverse taxonomy of strategies exist to estimate the parameters of
SSMs. We refer the readers to [18] for an overview of SMC approaches.
Our problem differs from the classical cases in two respects: using
neural networks, our parameter space is very high-dimensional; and
with the flexibility we allow for, the latent system is not identifi-
able from the observations alone. With modern automatic differenti-
ation, the ubiquitous-in-machine-learning, gradient-based schemes are
an attractive choice. They perform well when the parameter space is
high-dimensional and generalise readily to specialised loss functions.
However, standard SMC algorithms are not differentiable.

Differentiable particle filter (DPF) refers, in the literature, to any SMC
filtering algorithm that is designed to return estimates of the gradients
of its outputs. The first DPF [15] used the well known reparameterisa-
tion trick to differentiate sampling from the proposal. But it did not pass
gradients through resampling, setting them to zero, so that gradients
are not propagated over time-steps.

In [32], the first fully smoothly differentiable particle filter is pro-
posed. Their strategy is to find a differentiable transport map from
the particle approximation of p(x, | yy.,_1) to p(x; | yy.,). This results
in consistent gradient estimates. However, it is computationally costly
and can suffer from numerical issues if not carefully tuned. We refer
to this method as optimal transport resampling as the map chosen is an
approximation of the entropy regularised Wasserstein-2 optimal map.

Several works [33-35] have explored applying REINFORCE [36]
to differentiate through the discrete resampling steps. However all
these papers opted to ignore the gradient due to REINFORCE due to
high variance. In [37] it is proposed to apply REINFORCE separately
to each resampled particle; however this is less generally applicable
than optimal transport resampling. Its gradient estimates have been
shown to be consistent [37,38] only for a restricted class of filters and
functions of the filtering outputs.

The only prior work in differentiable filtering specifically concerned
with regime-switching models is the RSDBPF [20]. The RSDBPF is a
direct application of the biased DPF of [15] to the RSPF [9]. However,
it does not attempt to learn the switching dynamic R?, K and assumes
these components are known a priori.

4. The differentiable interacting multiple model particle filter

The core algorithmic contribution of this work is to develop the
IMMPF into a differentiable variant, the DIMMPF, so that it can be
included into an end-to-end machine learning framework.
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T Tt

o tanh
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Fig. 2. Graphical representation of our proposed switching dynamic. Blue nodes are
input/outputs. Purple nodes are fully connected network layers with the specified
activation. Yellow nodes are non-learned functions. The switching probability mass,
K (k.4 | 7,), is the value at the k,,,th index of the model output K*.

4.1. Parameterising the model

For the dynamic and observation models, the choice is problem
dependent, so we do not make any specific recommendations; the
architectures used in our experiments can be found in Section 5.2. We
take inspiration from long short term memory networks (LSTMs) [39]
to design the parameterisation of R?. It is well known that SSMs, for
which the latent process does not forget its past in some sense result
in poorly performing SMC algorithms. Existing bounds on the stability
of filtering algorithms typically rely on either conditions that lead to
strong mixing [14], or a related drift condition [28]. Furthermore, there
are SSMs that do not obey these assumptions for which it can be shown
that their associated particle filter diverges exponentially (or worse) in
mean squared error with 7' [13].

For this reason, we include forget gates in our parameterisation of
the switching dynamic; i.e.we set r, = r,_; © a + b, where every element
of vector a is between 0 and 1, and b is a function only of k,. We desire
that this has the effect of decreasing the weight of information from
past states at each time-step before introducing information from the
noisy k,. Algebraically, the model can be expressed as,

r, = R? (k,,r,_l)

=5 (O1r,1) 00 (O:k)) O r,_; +tanh (O4k]) . (10a)

ro = R (ko) = R (ko,()) , (10b)

K" (k| r,_)) = |6,tanh (Osr,_,)| - k.. (10c)
K/g k/ _

K’ (ki Iro) = o— WALD) . (10d)

Yeer K (¢" 1 721)
where k] is the one hot encoding of k,, © is the Hadamard product, and
0, .5 are learned matrices, 0 is the zero vector, and o (-) is the sigmoid
function. Kg is represented by a learned vector of regime probabilities
(see Fig. 2).

4.2. Estimating the gradient of the DIMMPF

The large majority of DPFs proposed [15,16,32,40,41] take deriva-
tives with respect to the proposal distribution’s parameters by the low
variance reparameterisation trick. However, for our case where the
state space has a discrete component no explicit reparameterisation
function exists. Implicit reparameterisations for mixture models [42]
have been shown to perform poorly in particle filtering [41], so we
avoid their usage in favour of REINFORCE. Furthermore, the model
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index, k,, is categorical rather than atomic so continuous relaxations
such as the one used in [43] do not apply.

Under the IMMPF proposal it is natural to combine the model selec-
tion steps and the resampling steps. We apply REINFORCE separately to
each resampled weight as done in [37,38] but use a reparameterisation
to sample MY (x, | x,_;.k,),

Z k"|r )

(MO () 1 x k)] (11a)

@GO (v, | < k) LB @l KO (ke 1)
Wl = . : (11b)
Nrng. [w;']

where we use L[-] to denote the stop gradient operator, which is
defined to be the operation that is the identity on the forward pass,
but sets the gradient of the enclosed quantity to zero. In modern auto-
differentiation libraries, this is easy to implement and computationally
cheap by detaching the operand from the computation graph. We refer
the reader to [44] for an expansive overview of Monte Carlo gradient
estimation.

Theorem 2. The weighting function Egs. (11a) and (11b), reduces to the
same value as the weights obtained using the Apppr, Eq. (8), in algorithm
1, on the forward pass.

Proof. In the forward pass, Eq. (11b) simplifies to:

Npegt! = G (| X0 k! Z Ok ) 12)

Evaluating Eq. (8) for a given latent state gives:
L KO (k) MO ()
regE] lw KO (ky |r )

Then calculating w’, as in line 6 of Algorithm 1 from Eq. (13), gives
Eq. (12). O

(Anvwpr) (X[ K r)) = as

Theorem 3. Under the weights given in Eq. (11); assuming the model com-
ponents are such that the proposal dominates the target; and the magnitudes
of wi, Vow?, w and Vyy are upper-bounded for all t then,

2
VoF, (W)~ V4P, (v) 14)

as N — oo, implying that V,F,(y) is a weakly consistent estimator of
Vol (w).

Proof. See Appendix C for a proof. []

Our weight function, Eq. (11), is not the unique estimator that
applies REINFORCE separately to each resampled particle. We improve
on the naive choice,

(Wyae); = [Zw KO(kr1r_ ). as)

(y,lxt, x)
J.[wt 1]

where 4] is the index of the particle at time ¢ — 1 that particle n
at time ¢ has been propagated from, by, at each time-step, partially
Rao-Blackwellising over the previous time-step. Only the REINFORCE
gradient terms benefit from this Rao-Blackwellisation, reparameterised
gradients track only through the ancestral path. We find experimen-
tally, in Table 1, that the Rao-Blackwellised estimator performs signifi-
cantly better than its naive counterpart. The naive estimator’s variance
is such that it performs worse than the biased estimator that zeros out
the REINFORCE terms.

The Rao-Blackwellisation comes at a computational cost; the density
MO (x]|xm 1,lc;') must be computed for every pair {n, m} at an operation
cost of © (N?) in the forward pass compared to the usual particle filter
O (N) complexity. In practice these operations can be computed in
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parallel so the Rao-Blackwellised estimator, Eq. (11), is only slightly
slower to compute than the naive estimator, Eq. (15). Furthermore, by
Theorem 2, the Rao-Blackwellisation only affects the gradient estima-
tors, so we revert to the O (N) algorithm during inference. See Table 2
for our results.

We remark that the proof of Theorem 3, and its corollaries rely on
the fact that, using the DIMMPF weights Eq. (11), gradients are only
taken with respect to the model components and not the proposal.
For this reason, one cannot expect our estimator to provide a useful
learning signal for the proposal process. In [37] the authors investigate
a closely related estimator and are unable to find clear theoretical or
experimental evidence that it does. Under our set-up the proposal has
no extra parameters in addition to the model. Developing a practical
gradient estimator that can learn an efficient proposal process remains
an open problem.

4.3. Training the DIMMPF

Consider two approaches to train a particle filter when there is
access to the ground truth latent state during training. The first is
to estimate the latent state and minimise some distance between the
estimator and the ground truth. The second is to maximise the joint
likelihood of the observations and their associated ground truth latent
state. We find the best results are obtained when optimising a loss
that combined the two strategies. A related strategy is recommended
in [15] where the optimisation objective is a combination of the MSE
of filtering estimates and a loss on the measurement and observation
models individually.

In our case, the MSE of filtering estimates is obtained by Algo-
rithm 2. To estimate the joint likelihood, we re-partition the model
so that during training the available quantities {x,,y,} are taken as
observations and {r,,k,} are the latent state estimated by filtering.
Since the observations now depend on each other, this formulation
does not strictly satisfy the usual definition of an SSM, described in
Eq. (1). However, in particle filtering, the observations are treated as a
sequence of non-random constants so the algorithm generalises freely
to situations where the observations have arbitrary backwards-in-time
interdependence. To account for this interdependence, we replace the
conditional likelihood in Eq. (1), with

9[ ~ G ()A’x | )Aczs)A’O:t—l) . (16)

We provide precise details on how we calculate these losses in Ap-
pendix A.

Needing to run two filters incurs an extra computational cost.
However, for the second filter the conditional likelihood only depends
on the state through the discrete model index, so one can precompute
all the conditional likelihoods for each choice of model index using
GPU parallelism. Then the only neural network we need to evaluate
per-particle during filtering is R? (k;,r,_;).

Formally, Theorem 3 does not prove the consistency of the gradients
of either the losses we adopt, however the appropriate results follow
as corollaries. See Corollaries C.1 and C.2 for formal statements and
proofs of the consistency of the gradients of the MSE and log-likelihood
respectively. When we calculate the log-likelihood of {x,,y,} using
the re-partitioned model, the state dynamics have no reparameterised
component. In [37] it is shown, for this case, that the resultant gradient
estimator is unbiased. It is closely related to the Rao-Blackwellised
recursion obtained in [45].

4.4. The full algorithm and practical considerations
We present the full DIMMPF algorithm® in pseudo-code in Algo-

rithm 2. It can be checked that the filtering loop of Algorithm 2 is

3 Our implementation, including the code to run the experiments in this
paper can be found at https://github.com/John-JoB/DIMMPF.
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equivalent, in the forward pass, to running Algorithm 1 with target
(6) and proposal (8), with the model indices deterministically chosen
rather than sampled uniformly. When computing the data-likelihood,
Algorithm 2 is modified such that the distribution of x, is accounted
for in the weights instead of being sampled from, see Appendix A for
detail.

In practice, it is common to use a variance-reduced scheme to
resample the particle indices in lieu of multinomial sampling. One such
scheme is the systematic resampling of [46] and its closely related
variants, which are found to work well empirically. The increased
stability offered by systematic resampling is of increased importance
in the context of DPFs, where it stabilises gradient updates as well
as the forward pass [47]. However, under systematic resampling the
particles are no longer sampled i.i.d., so the central limit theorem used
to prove Theorem 1 no longer holds. We make the recommendation that
practitioners use systematic resampling based on our empirical results.

Algorithm 2 Differentiable Interacting Multiple Model Particle Filter.
All operations indexed by n should be repeated for all n € {1,..., N}
and those by q for g € {1, cios Nyeg |-

dynamic models M?
switching dynamic K¢
encoding functions R’
particle count N
observations y;.p
number of regimes N e,

I:N :
0T particle

Input: priors Mg
regime prior K{
observation models G?
time length T
loss coefficient A
ground truth X.7
Output: unormalised weights w
I:N p1:N LI:N
{xo7 ’kj%:T’rO:T
n nNreg
ki < |——1 ,
: Sample xj ~ M{ (x7 | kj)
. _ RO 3
ro=R"(ky.0)
. w(’; =GY (nyo | xg,k(';)
=n Yo

locations

w, =
N
0 T wp
forr=1to T do
NnNreg
o | D
7 0
g w,_ K ("lr:lfl)
8: w,” « o S
m m
o @ K gl

o . . L mk
9:  Sample ancestor indices a} = m with probability equal to w:" !

N 9 oK w e

10 sample x; ~ MY (x| x;" . k)
11 e RO (kT

12:  Calculate wy from Eq. (11)
13 @ = =

’ ! zljr\l’:] wy'
14: end for

15: return w

I:N _I:N ,1:N .I:N
o:1 > Xoir Kol ol

5. Numerical experiments

In this section, we present the results from a set of numerical
experiments.

5.1. Simulated environments

We repeat the test environment of [9,20], in which the dynamic and
observation models of each regime are uni-variate and Gaussian.

My (x) = U (=0.5,0.5) , (17a)
M (x,|x,_1. k) =N (aer,_l +bkr,z72> , (17b)
G(y,|x,,k,) =N(ak,\/m+bk,,62) R (17¢)
[a1, ..., ag] = [-0.1,-0.3,-0.5,-0.9,0.1,0.3,0.5,0.9] , (17d)
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[b1.....bg] =[0,-2,2,-4,0,2,-2,4] (17e)
6> =0.1. a7zn

This model poses some challenges to state estimation. Because the
observation location depends on the state only through its absolute
value, it is impossible to estimate the state using the observations alone.
Furthermore, the coefficients a;, b, are chosen so that it is hard to
identify the current regime over short sequences, for example, regimes
1 and 5 have identical data-likelihoods when each is run in isolation.
It is therefore required that all of the observation model, the dynamic
model and the switching dynamic are well-learned.

We include three different switching dynamics. The first is a Markov
switching system where the probability of remaining in the same
regime is 0.8; switching to the next regime, with regimes 9 and 1 iden-

tified, is 0.15; and all other regimes have probability 1;_0' Algebraically:

K (klko:ioy) = (K_,)" BK., (18a)
0.8 0.15 p P
p 08 0.15 ... p
B=] : ], (18b)
p p . 0.8 0.15
0.15 P p 0.8
1
p= m s (18C)

where k! are the one-hot encodings of the regime index.
In the second setting, the regimes follow a Pdlya-urn distribution
where the sampled regimes are more likely to appear at later time-steps:

1+ X001 (k= k,)
8+1

The Pélya-urn setting has frequent switching and often the distribution
of model indices looks close to uniform, making it simpler to approx-
imate but harder to perform inference on than the Markov setting. In
both cases we set K (ko) = é

To demonstrate the versatility of our algorithm, we introduce a
more challenging switching dynamic than has been used in previous
work. For the third setting, the time between regime switches is approx-
imately Erlang distributed. The order of the Erlang distribution is equal
to the number of periods for which the system has been in the current
regime. Once the Erlang distributed period is finished, the system jumps
randomly to one of the two adjacent regimes. However, we include a
small probability that at any time-step the system jumps to any regime.
This system is most simply expressed algebraically as

K (kt|k0:t—l) = (19)

m, ~ Bernoulli (0.01) , (20a)
n, ~ Bernoulli (0.2) , (20b)
-1
¢ (ko k) = D1 ((ky = k) A (= (kgpy = k) V (my = 1))) (20c)
=0
Ly, n,=0,
L=l =1, = (l_; =0)A(n,=1), (20d)
¢ (kounky), (I_y=0)A(n,=1),
a=(n=1)A(l,_ =0), (20e)
Nll-eg’ = 1’
K (kylhgspy) = 4 & (ke = Kect) o (= 0) Aay, (206)

< o.sn(k,:k,fﬁl(m')d Necg)) > (m,=0)Aa,.

+0.41 (k,:k,_l —l(mod Nreg)>

We choose this dynamic because of its complexity to learn. There are
both strong dependence between the index at successive time-steps, like
the Markov setting; and long term dependencies, like the Pélya setting.
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Table 1
Filtering accuracy for the discussed algorithms. Reported values are the achieved mean
squared filtering error and averaged across 20 independent training runs.

Algorithm Markov MSE Pélya MSE Erlang
Transformer (baseline) 1.579 + 0.169 1.508 + 0.112 1.614 + 0.160
LSTM (baseline) 0.732 + 0.083 0.667 + 0.053 0.978 + 0.103
RLPF (baseline) 0.536 + 0.143 0.509 + 0.071 0.771 + 0.110
DIMMPF-OT (baseline) 0.891 + 0.128 0.866 + 0.134 0.873 + 0.122
DIMMPEF-N (baseline) 0.751 + 0.0694 0.741 + 0.071 0.742 + 0.072
DIMMPF (ours) 0.500 + 0.100 0490 + 0.052 0.712 + 0.115
IMMPF (oracle) 0274 + 0.019 0.408 + 0.014 0473 + 0.025
Table 2

Average computation times per training epoch (10 batches of 100 parallel filters of
200 particles each) and testing run (1 batch of 500 parallel filters of 2000 particles
each) on the Pélya experiment.

Algorithm Av. train epoch time (s) Av. test time (s)
Transformer (baseline) 0.182 0.00310

LSTM (baseline) 0.0145 0.000792

RLPF (baseline) 5.98 0.814
DIMMPEF-OT (baseline) 425 Out of memory
DIMMPEF-N (baseline) 8.56 0.773

DIMMPF (Ours) 10.5 0.759

5.2. Experiment details

In addition to the our DIMMPF, we present a number of baseline ap-
proaches. The problem of sequential state estimation can be described
as learning to predict a sequence of latent states from a sequence
of observations, so any available sequence-to-sequence techniques can
apply. We choose to use a transformer [48] and an LSTM [39] as
baseline approaches as they represent the state-of-the-art in sequence-
to-sequence prediction. The transformer is encoder only and the LSTM
is unidirectional so that only past information is used. We also compare
to the regime learning particle filter (RLPF), a preliminary version
of our methodology that we presented in the conference paper [23].
Finally we include two variants on the DIMMPF: the DIMMPF-OT that
uses a transport map based resampler [32] to be differentiable, instead
of the gradient estimator developed in Section 4.2; and the DIMMPE-N
that uses the @ (N) naive gradient estimator, Eq. (15).

All filtering based models parameterise both the measurement and
dynamic models with fully connected neural networks of two hidden
layers containing 11 nodes each. During training we use a population of
200 total particles, which we increase to 2000 for testing. This is reduced
to 80 particles in training and 800 in testing for the DIMMPF-OT due
to memory constraints. We generate 2000 trajectories of 51 time-steps
1 for training, validation and testing,
respectively. We train in mini-batches of 100 trajectories, but test on the
full 500 trajectory batches. Each experiment is repeated 20 times with
independent data generations. All experiments are performed using an
NVIDA RTX 3090 GPU.

and use them in ratio 2 : 1 :

5.3. Results

We present the main results in Table 1, and the computation times
in Table 2. The DIMMPF is the best performing algorithm in all exper-
iments. The filtering approaches far outperform the generic sequence-
to-sequence techniques in mean accuracy, however, the LSTM is com-
putationally the cheapest. In training, the DIMMPF is faster than the
DIMMPF-OT. But, it is slower than the DIMMPF-N due requiring more
terms to be computed. The RLPF further saves time through ignoring
gradient terms that the DIMMPF and DIMMPF-N evaluate. During in-
ference, the DIMMPF and DIMMPF-N are equivalent so achieve similar
timings.
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6. Conclusions

In this paper, we have presented a novel differentiable particle filter,
the DIMMPF, that addresses the problem of learning to estimate the
state of a regime switching state space process. Our algorithm improves
over the previous state-of-the-art, the RSDBPF, in three respects. Firstly,
the RSDBPF required that the switching dynamic be fully known a
priori, whereas our algorithm can learn it from data. Secondly, the
DIMMPF takes account of the assigned regime when resampling par-
ticles, thereby concentrating computation on more promising regions.
Thirdly, the gradient estimates returned by the DIMMPF are consistent.

We evaluated our algorithm on a set of numerical experiments.
The three settings, Markov, Pdlya, and Erlang are designed to test
the learning of short-term strong dependency, long-range weak depen-
dency, and both simultaneously, respectively. The proposed DIMMPF
leads to the smallest filtering errors on all three settings. The DIMMPF
is computationally expensive during training, both compared to its
simpler variants and especially out-of-the-box sequence-to-sequence
techniques. However, during inference it achieves a similar speed to
the other DPF approaches.

The key limitations of this work are that the DIMMPF is only
capable of learning model parameters and not, additionally, an efficient
proposal process; and that the number of regimes must be known. We
leave addressing these limitations to future work.

Another important direction for future work is towards more chal-
lenging environments, including real-world data. We propose a simple
architecture to parameterise the switching dynamic; future work might
consider more advanced design patterns such as attention.
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Appendix A. Calculating the losses

Mean squared error loss: The mean squared error of the filtering
estimates is calculated as follows, with %, denoting the ground truth
latent state.

(A1)

| T /N 2
Lt = 7 2 (Z‘} @’ (xy-x,)> )

Data-likelihood loss: Calculating the data-likelihood requires a modi-
fication to the inputs of Algorithm 2. We replace the observation model,
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G (y, | x", k"), with the marginal data-likelihood conditioned on the

previous time-step,
G? (v | %, k") MO (%, | %,_y kY). (A2)

In practice we do not track a latent state x,, but the same effect can
be achieved in Algorithm 2, by setting M? (x,|x,_;,k,) to be uniform
over some set that does not depend on x,_; or k,. Then the negative
log data-likelihood is estimated as

T N
L gata-likelihood = = 2,108 Y, wh = (T + 1) log N . (A3)
=0 n=1

Appendix B. Proof of Theorem 1

The following proof is based, in part, on the proofs found in Chap-
ters 8 and 11 of [13].

2

[AEA

:]E[(T‘,(u/)—/xu, (dfc,)W(fc,)+/Xy, (dfc,)q/(;‘(r)_[[nt(v,))z}
sz{E

The first term can be bounded using the standard convergence result
for an auto-normalised importance sampler. For some factor ¢, that is
independent of N,

E [(P,(w)—/xm (d&)w(ﬁ))z]
SE[ (F,(w)—/xﬂr (dfcf)W(ffr)>

where we have used the fact that the particles are conditionally i.i.d.
given the particles at the previous time-step. For ¢ = 0, the second term
in Eq. (B.1) is zero, so MSE convergence is guaranteed i.e.Theorem 1
holds for t+ = 0. For ¢ > 0, we may bound the MSE by induction with
t = 0 as the base case. To perform the inductive step we first introduce
the identity:

Py ([YW (')Act) p (dfc, | f‘t—lvﬂ)) =P ), (B.3)

which may be proved using basic probability rules and the conditional
independence structure of the SSM (Eq. (1)). One may write:

/Xu, (%) w (%) =gw:’1/xw(>?t)p<d>%, | %1 90:0)

=F,_, (/Xy/(fc,)p(dfcr | 2t—1’j}1)> :

This implies, using Eq. (B.3), that the second term in (B.1) is bounded
by a term of order N~! assuming that Theorem 1 holds for ¢ — 1. Then,
the MSE becomes the sum of two bounded by order N~! terms. So, it is
bounded by %Cx/ for some constant ¢/ and therefore the MSE converges
to zero in the large sample size limit.

(7’, (w) - /Xll, (d%,)w (%

N
©
| —
+
=
—
/N
3c\
x
=
o
<
=
1
~
N
~——
©
L —
——

(B.2)

2
SIIN 1IN 1
|xr—1 YW ] = ﬁcf’
o0

(B.4)

Corollary B.1.  The IMMPF with deterministic sampling exhibits L*
convergence under the same conditions as Theorem 1,

12
(rDet), (W)—) ]P)x (W) 5 (BS)
implying the weak consistency of (Fp,,) W)

In the deterministic case the particles are no longer i.i.d given the
previous particles, so we can no longer apply the convergence result
for the auto-normalised importance sampler to obtain Eq. (B.2).

The IMMPF sampling algorithm is equivalent to scheme N1 in [27]

where each sampling distribution in repeated for NL copies. Follow-

ing the derivation in Appendix C, Option 3 of [27rfgwe can see this
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sampling stratergy is unbiased. Furthermore, they give the variance of
the unnormalised sum of weighted samples for a zero mean quantity,

N
PE Y wew ", (B.6)
n=1
to be
N Nreg
Var[j] = — E [w ) w ) k] < [lwlZ lwll - (B.7)
reg k=1

Then by Slutsky’s theorem, the asymptotic variance of the proceeding
auto-normalised importance sampler is

)
PRERTICL) '

NE[w )]
Which is exactly the same asymptotic variance one obtains using uni-
form sampling. This convergence result can be substituted for that of
the usual auto-normalised importance sampler in (B.2) and the rest of
the proof is identical to that of Theorem 1.

(B.8)

We remark that although the asymptotic variances of the auto-
normalised importance samplers for the deterministic, Eq. (B.8), and
uniform cases are identical, this does not imply the variances of the
filtering estimates are.

Appendix C. Proof of Theorem 3

This result and the attached corollaries apply to the deterministic
sampling case by applying Corollary B.1 wherever their proofs use
Theorem 1 for the uniform case. Throughout this derivation, if the
distribution an expectation is taken over is not specified it may be
assumed to be the full posterior p (xp, kr,rr|yo.1)-

Consider generating N — oo trajectories from the bootstrap par-
ticle filter with, Eq. (7), for our system, Eq. (2), with M? (x,|x,_;)
sampled by the reparameterisation trick. Using the surrogate objectives
of [49], we can directly write the appropriate gradient estimator for this
stochastic program as:

N N
g, | S o )] - 2, | v et
n=1 n=1
N N /T-1 o
+ Yy (X)) Yy Y (Z [1ogsz;" +log K* (k,";,n,f )] +log K¢ (k@)) ] , (C1)

n=1 m=1 \ 1=0

for ancestor variables agg;]_l such that 4] is the index at time ¢ that
particle n at time 7 + 1 descends from and
ar G (It k)

- Z;\;l G (v1x;. k;) .

Taking the limit N — oo and applying the consistency result of Theorem
1 then:

n
t

(C.2)

V,E [y/ (x,)] =E [ Vow (x,) +w (x,) Vg ( log Kg (ko) —logp (vo.7) +

T

2 [log G (y|x,. k) + 115y log K? (k,,r,_l)] )] , C3
t=0

where 1,5, is defined to be equal to 0 for = 0 and 1 otherwise. Since
our proposal Eq. (8) contains no additional parameters, if our gradient
estimator is asymptotically equal to Eq. (C.3), then by Theorem 1 it is
consistent. Applying Theorems 1 and 2,

N 2
Vo Y @ty (xi)—  E
n=1

fr~p(%rlyo:7)

[V(,l// (xT) +y (x,) Vylog (LDT)] .

(C.4
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Defining Z; = Y7 log XN, w! — (T + 1) log N,

E [1// (xT) Vg log u')T] =

fr~p(&r lyo.r)

“Ely (xr)] Vo (Zr - Zr))+ E

. . [W(XT) Vo (logG” (Y'r IxT’kT)
Sr~p(%r1v0.7)

L E [P ()?T | f‘T—l) (log wr_; +logK? (kT | rT—I))] )]

P(&r0-1) 87y ~p(r 4 90:71)

(C.5)

=-E [lI/ (XT)] VoZr

T
+E [W (x7) Vg <logKg (ko) + z log G’ (y,|x,,k,) + 1,5, log K’ (k,lr,_l)>:| , (C.6)

=0

where we have derived the final expression by a recursive application
of Slutsky’s theorem. Note that we cannot marginalise over the past
time-steps in the outer expectation since x; is a function of all x,.p_;.

T
Z log G‘g y,lx,, ) + 1,5, log K° (k,lr,_l)>]

VQZT——> E [vg <10g K (ko)
=0

()]

=Vylogp (yo:r) .- (C.8)
Combining (C.8), (C.4) and (C.6) we directly obtain (C.3) so our gradi-
ent estimator is consistent. We have proved that estimates of gradients

of expectations for bounded functions, by Theorem 1, converges in the
L? sense to the true expectation under the posterior.

Corollary C.1. Under the same assumptions as Theorem 3 the DIMMPF

estimate of the gradient of the MSE of a bounded function is weakly
consistent. Precisely, for a true state X,

v (3r)) SV E )] v (). €9

2 Wy (x

This result is trivially extended to an average over time-steps and batched
trajectories due to the linearity of the gradient operator.

Proof. Define i (x7,
Z wiw xT

Applying Theorems 1 and 3, as well as Slutsky’s theorem we therefore
have:

N
IAEN
n=1

=Yy (E[w (xr)] - v (%))

2

v (3r) ) 5 2B [ (x1)] VoE [ (x2)]

(C1D)

For our case, Eq. (A.1), y is the identity function, which is not bounded.
So, formally we have not proved convergence. However, one could
instead take y to be an arbitrarily wide rectangular function for a
formally consistent estimator. []

Corollary C.2. When the weights and their gradient are upper-bounded,
the estimate of the gradient of the log-likelihood, is consistent. ILe.

T 2
ZVQZTL Vo logp (¥o.7) - (C.12)

t=0

Proof. This result is directly implied by Eq. (C.8). For the data-
likelihood loss, 3 Vo Z; = =V L gatadikelihoods DY EQ- (A.3). [
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Data availability

No data was used. The code is may be accessed on Github from a
link in the paper.
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