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 A B S T R A C T

We propose a sequential Monte Carlo algorithm for parameter learning when the studied model exhibits 
random discontinuous jumps in behaviour. To facilitate the learning of high dimensional parameter sets, 
such as those associated to neural networks, we adopt the emerging framework of differentiable particle 
filtering, wherein parameters are trained by gradient descent. We design a new differentiable interacting 
multiple model particle filter to be capable of learning the individual behavioural regimes and the model 
which controls the jumping simultaneously. In contrast to previous approaches, our algorithm allows control 
of the computational effort assigned per regime whilst using the probability of being in a given regime to 
guide sampling. Furthermore, we develop a new gradient estimator that has a lower variance than established 
approaches and remains fast to compute, for which we prove consistency. We establish new theoretical 
results of the presented algorithms and demonstrate superior numerical performance compared to the previous 
state-of-the-art algorithms.
1. Introduction

There has been longstanding interest in Bayesian filtering for sys-
tems exhibiting discontinuous behavioural jumps, typically modelled 
by ascribing the system a finite number of distinct and indexed regimes. 
Two systems frequently modelled in this way include financial markets 
reacting swiftly to economic news [1,2], and tracked targets suddenly 
changing course or acceleration [3–6]. Much of this existing work is 
focused on Markov switching systems where the probability of jumping 
is allowed to depend only on the index of the current regime.

Particle filters [7,8] are a class of Monte-Carlo algorithms for esti-
mating the posterior distribution of a Markov hidden signal given noisy 
observations of it. In the regime-switching setting, if the regime index 
is modelled as a Markov chain, one may treat it as a component of the 
hidden signal in a particle filter [3].

In [9] the authors developed the regime switching particle filter 
(RSPF), extending the approach in [3] to systems where the regime 
index can depend arbitrarily on its past. They achieved this by having 
every particle keep a memory of its entire regime history, similar to 
the fixed-lag smoother of [10]. The interacting multiple model particle 
filter (IMMPF), introduced in [5], assumes the regime index is a Markov 
chain, but allows it to depend on the latent state as well as the index at 
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the previous time-step. We show that, under the reformulation of the 
non-Markov switching model that we develop in this paper, the former 
problem is a special case of the latter.

In many real world settings, the average number of time-steps a 
system spends in each regime can be large. This is typically modelled 
by taking switches to be rare events. Most particle filtering algorithms 
naturally focus computation on more likely regions of the state space. 
With a restricted particle count, overtime this can result in the num-
ber of particles in all regimes apart from the current one going to 
zero; so when jumps do occur they are not detected [6,11]. It has 
become common practice, therefore, in regime switching filters to set 
the number of particles assigned per regime at each time-step to be 
equal on average. This is achieved in [9] by proposing the regime 
index uniformly across all regime choices. However, this ignores the 
probability of each particle adopting the given regime.

The IMMPF takes a more principled approach, it combines the 
resampling and regime selection steps to improve sampling efficiency. 
However, the IMMPF is not strictly a particle filter in the sense studied 
in [12–14]. To the best of our knowledge, no proof of consistency for 
the IMMPF exists in the literature.
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Differentiable particle filters (DPFs) [15–17] are an emerging class 
of particle filters designed in such a way that the algorithm is end-to-
end differentiable, so that one may obtain accurate gradient estimates 
for use in gradient based parameter inference. The motivating use case 
for DPFs is to learn model components as flexible neural networks, 
typically when the prior knowledge on the functional form of the 
underlying model is of poor quality. In this case, other parameter 
inference paradigms fail. For example, the EM algorithm [18] requires 
a specific functional form of the model for the maximisation step 
to be closed-form; and both derivative-free optimisation and particle 
Markov chain Monte Carlo [19] do not scale well to large dimensional 
parameter spaces.

The first effort to address switching models in a DPF framework 
is [20], with the regime switching differentiable bootstrap particle 
filter (RSDBPF). However, the RSDBPF is only capable of learning 
the individual regimes. The meta-model that controls the switching, 
henceforth the ‘switching dynamic’, is required to be known a priori. 
During inference, the RSDBPF runs a RSPF so does not sample particles 
as efficiently as the IMMPF. Furthermore, it has an asymptotically 
biased gradient update.

There are few approaches in the literature that operate under an 
unknown switching dynamic and, to the best of our knowledge, none 
in the more challenging parameter estimation framework. In [21], a 
related problem is studied: the system may belong to one of a set of 
candidate regimes but the regime may not change during a trajectory. 
Their strategy is to run a separate filter for each regime but assign 
computational effort, i.e. the number of particles, in proportion to the 
posterior probability that the system is in each regime. This strategy 
was generalised in [22], where the particles are permitted to occa-
sionally exchange between regimes. However, this algorithm cannot 
provide a consistent estimator in the general case where the regime 
can switch at any time-step.

In this paper we propose the differentiable multiple model particle 
filter (DIMMPF), the first DPF approach to filtering regime-switching 
models where neither the individual models nor the switching dynamic 
are known. The DIMMPF can be seen as an IMMPF that can return 
statistically consistent estimates of the gradient of its filtering mean 
with respect to the model parameters.

The main contributions of this work,2 can be summarised as follows:

• We present the DIMMPF, a novel algorithm for learning to esti-
mate the filtering mean of a general regime-switching model.

• We develop a neural network architecture to parameterise a 
general unknown switching dynamic.

• We prove that the DIMMPF generates consistent estimators of 
filtering means and their gradients. Entailing a derivation of, to 
the best of our knowledge, the first proof that filtering estimates 
of the IMMPF are consistent.

• We evaluate the DIMMPF on a set of simulated data experiments 
and demonstrate state-of-the-art performance.

The remainder of this article is structured as follows. In Section 2 we 
introduce the problem statement. Section 3 reviews the relevant back-
ground for the paper and explains how this paper builds on previous 
work. Section 4 develops our algorithmic contribution, the DIMMPF. 
Section 5 describes the experiments and presents the results. We con-
clude in Section 6.

2 A limited version of this work was presented by the authors in the 
conference paper [23] which presents a simpler version of our methodology 
that has a biased gradient update. The conference paper contains limited 
discussion, no theoretical insight, and a more basic set of experiments.
2 
2. Problem statement

We define a state-space model (SSM) to describe a discrete time 
system of two parallel processes: a latent Markov process, {𝑥̂𝑡

}

; and 
their associated observations {𝑦̂𝑡

}

, where 𝑡 is the discrete time index. 
Every observation 𝑦̂𝑡 is conditionally independent of all other variables 
at previous time steps given 𝑥̂𝑡. Algebraically, an SSM is defined as: 

𝑥̂0 ∼ 𝑀̂0
(

𝑥̂0
)

,

𝑥̂𝑡≥1 ∼ 𝑀̂
(

𝑥̂𝑡 ∣ 𝑥̂𝑡−1
)

,

𝑦̂𝑡 ∼ 𝐺̂
(

𝑦̂𝑡 ∣ 𝑥̂𝑡
)

,

(1)

for the set of states 𝑥̂𝑡 ∈  , the set of observations 𝑦̂𝑡 ∈  , the random 
measure 𝑀̂0, and the probability kernels 𝑀̂ and 𝐺̂.

We consider an SSM where at each time-step the latent and obser-
vation processes may, together, adopt one of a set of 𝑁reg regimes. To 
model this system, we introduce two additional latent variables: the 
regime index, 𝑘𝑡 ∈  ∶=

{

1, 2,… , 𝑁reg
}

; and a cache that acts as a 
memory of previous regimes, 𝑟𝑡 ∈  ⊆ R𝑑𝑟 , where 𝑑𝑟 is the chosen 
dimension of the regime cache. We illustrate this system graphically in 
Fig.  1 and define it algebraically as: 

𝑟0 = 𝑅𝜃0
(

𝑘0
)

,

𝑟𝑡≥1 = 𝑅𝜃
(

𝑘𝑡, 𝑟𝑡−1
)

,

𝑘0 ∼ 𝐾𝜃
0
(

𝑘0
)

,

𝑘𝑡≥1 ∼ 𝐾𝜃 (𝑘𝑡 ∣ 𝑟𝑡−1
)

,

𝑥0 ∼𝑀𝜃
0
(

𝑥0 ∣ 𝑘0
)

,

𝑥𝑡≥1 ∼𝑀𝜃 (𝑥𝑡 ∣ 𝑥𝑡−1, 𝑘𝑡
)

,

𝑦𝑡 ∼ 𝐺𝜃
(

𝑦𝑡 ∣ 𝑥𝑡, 𝑘𝑡
)

,

(2)

where we have made explicit any dependence on the model parameters 
𝜃. 𝑅𝜃0 and 𝑅𝜃 are deterministic functions, 𝐾𝜃

0  and 𝐾𝜃 are categori-
cal distributions. To avoid confusion with the generic SSM Eq. (1), 
SSM model components and variables are denoted by a circumflex (̂)
whereas components of the studied regime switching model, Eq. (2) 
are not. For notational simplicity we do not make explicit any time 
dependence of the model components; by treating the time as a series 
of constants, time dependence can be introduced without change to the 
theoretical analysis.

This paper addresses the problem of accurately estimating filtering 
means, E𝜃 [𝑥𝑡 ∣ 𝑦0∶𝑡

]

. Unlike previous work [9,20,22], our formulation 
allows all of the dynamic model, 𝑀𝜃

0 , 𝑀
𝜃 ; the observation model, 𝐺𝜃 ; 

and the switching dynamic, 𝑅𝜃0 , 𝑅𝜃 , 𝐾𝜃
0 , 𝐾

𝜃 , to depend simultaneously 
on the learned parameters 𝜃. However, we require that the number of 
regimes 𝑁reg be given; efficiently determining 𝑁reg is left for future 
work.

Problem analysis
The advantage of our formulation is that the joint hidden process 

{

𝑥𝑡, 𝑘𝑡, 𝑟𝑡
} is explicitly Markov. Identifying {𝑥𝑡, 𝑘𝑡, 𝑟𝑡

} with {𝑥̂𝑡
} and 

{

𝑦𝑡
} with {𝑦̂𝑡

} it is clear that our model (2) is a special case of an 
SSM (1). Existing results and algorithms concerning SSMs, i.e.particle 
filters, can be applied directly in our setting.

It is instructive to demonstrate a pair of special cases of our model. 
Taking 
𝑅𝜃0

(

𝑘0
)

= 𝑘0, 𝑅
𝜃 (𝑘𝑡, 𝑟𝑡−1

)

= 𝑘𝑡 , (3)

one recovers the popular Markov switching model [1,4,24]. Alterna-
tively taking 
𝑅𝜃0

(

𝑘0
)

=
{

𝑘0
}

, 𝑅𝜃
(

𝑘𝑡, 𝑟𝑡−1
)

=
({

𝑘𝑡
}

∪ 𝑟𝑡−1
)

⧵
{

𝑘𝑡−𝜏
}

, (4)

for some fixed 𝜏, one obtains the model with perfect memory of its 
regimes for a fixed lag, similar to the strategy of [25]. Taking 𝜏 to be 
larger than the trajectory length gives the model with perfect regime 
memory, as considered by [9,20].

It is well known that, as a consequence of the resampling step, 
particle filters suffer from path degeneracy [26], wherein late-time 
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Fig. 1. Bayesian network representation of the considered regime switching model.
, 
particles are descended from only a small subset of the early time 
particles. In the perfect memory formulation this means that late-time 
particles will form a poor quality sample of the early time regime 
indices, so keeping full trajectories is not useful. 𝑅𝜃 can be thought 
of a caching function that keeps the useful information in the regime 
history. Moreover, myriad practical challenges arise in trying to store 
and utilise a linearly growing amount of information.

Since the regime may take only one of 𝑁reg values for each time-
step, at time 𝑡, || ≤ 𝑁 𝑡+1

reg , with || being the cardinality of the set 
. However, an R𝑑𝑟  representation is more convenient for a neural 
network implementation.

3. Background

3.1. The interacting multiple model particle filter

Our algorithm may be seen as differentiable variant of the IMMPF [5]
indeed, we show in Theorem  2 that the two are exactly equivalent on 
the forward pass. In [5] the IMMPF is formulated for regime switching 
systems where the system state and regime-index, {𝑥𝑡, 𝑘𝑡

}

, jointly form 
a Markov process. Endowing the state with the auxiliary variable 𝑟𝑡 it is 
clear that our problem, Eq. (2), is a special case of the problem solved 
by the IMMPF. For clarity, we present the IMMPF as applied to Eq. (2).

In filters for regime switching systems, to avoid the sample col-
lapsing to a single regime, it is standard to propose the regime index 
uniformly [6,11]. The obvious strategy [9] to filter our system, Eq. (2), 
would therefore be to run a particle filter with hidden state {𝑥𝑡, 𝑘𝑡, 𝑟𝑡

}

and observations 𝑦𝑡. Where 𝑘𝑡 is proposed uniformly. However, doing 
so is agnostic to each particles probability of being in its sampled state.

The IMMPF [5] approach is to modify the resampling step as so: for 
every particle at time 𝑡, to first choose a regime index, 𝑘𝑡, then resample 
a particle at time 𝑡−1 with weight equal to an estimate of their posterior 
probability conditional on being propagated to regime 𝑘𝑡 at time 𝑡. The 
other components of the hidden state {𝑥𝑡, 𝑟𝑡

} can be propagated in the 
usual way. Under this approach, the resampling probabilities depend 
on the value of the latent state at the next time-step, as such it is not 
possible to express this algorithm as a sequential importance sampling–
resampling particle filter [8,13]. In practice we deterministically choose 
there to be an equal number of particles in each regime, but for the 
sake of exposition we focus on the case that the regime indices are 
uniformly sampled. We justify this simplification by the observation 
that the deterministic case can be seen as a deterministic sample of 
the mixture model resulting from the uniform case, and so is unbiased 
given the population at the previous time-step [27].

In Algorithm 1 we introduce a very general sequential Monte-Carlo 
algorithm that includes both the usual particle filter and the IMMPF 
as special cases. Consider repeatedly importance sampling a series of 
target, 𝜇 (𝑥̂𝑡

)

, and proposal, 𝜆𝑡
(

𝑥̂𝑡
)

, distributions that may depend on 
the sample at the previous time-step. We refer to this algorithm as 
3 
Algorithm 1 Sequential Multiple Importance Sampling. All operations 
indexed by 𝑛 should be repeated for all 𝑛 ∈ {1,… , 𝑁}. 𝑐 is a, typically 
unknown, constant.
Input: proposal mixtures 𝜆0, 𝜆𝑡   time extent 𝑇

  particle count 𝑁
1: 𝑥̂𝑛0 ∼ 𝜆0

(

𝑥̂𝑛0
)

;

2: 𝑤𝑛0 ←
𝜇0

(

𝑥̂𝑛0
)

𝜆0
(

𝑥̂𝑛0
) ; 𝜇0

(

𝑥̂0
) is defined in Eq.  (5).

3: 𝑤̄𝑛0 ←
𝑤𝑛0

∑𝑁
𝑖=1 𝑤

𝑖
0
;

4: for 𝑡 = 1 to 𝑇  do 
5: 𝑥̂𝑛𝑡 ∼ 𝜆𝑡

(

𝑥̂𝑛𝑡
)

6: 𝑤𝑛𝑡 ← 𝑐 𝜇𝑡
(

𝑥̂𝑛𝑡
)

𝜆𝑡
(

𝑥̂𝑛𝑡
) ; 𝜇𝑡≥1

(

𝑥̂𝑡
) is defined in Eq.  (6).

7: 𝑤̄𝑛𝑡 ←
𝑤𝑛𝑡

∑𝑁
𝑖=1 𝑤

𝑖
𝑡
;

8: end for
9: return 𝑥̂1∶𝑁0∶𝑇 , 𝑤

1∶𝑁
0∶𝑇 , 𝑤̄

1∶𝑁
0,𝑇 .

multiple sequential importance sampling (SMIS), since 𝜇𝑡≥1 and 𝜆𝑡≥1
will be mixtures in all cases of interest.

For filtering, ideally the target is the posterior. 
𝜇𝑡

(

𝑥̂𝑡
)

= 𝑝
(

𝑥̂𝑡 ∣ 𝑦̂0∶𝑡
)

. (5)

However, at 𝑡 > 0 the true posterior is not typically available so we 
replace it by an empirical approximation: 

𝜇𝑡≥1
(

𝑥̂𝑡
) def
=
𝐺̂
(

𝑦̂𝑡 ∣ 𝑥̂𝑡
)
∑𝑁
𝑛=1 𝑤̄

𝑛
𝑡−1𝑀̂

(

𝑥̂𝑡 ∣ 𝑥̂𝑛𝑡−1
)

𝑝
(

𝑦̂𝑡 ∣ 𝑦̂0∶𝑡−1
) . (6)

We only consider SMIS algorithms with the target distribution given in 
Eqs. (5) and (6).

For example, we recover the generic bootstrap particle filter with 
(

𝜆Boot
)

𝑡≥1
(

𝑥̂𝑡
) def
=

𝑁
∑

𝑛=1
𝑤̄𝑛𝑡−1𝑀̂

(

𝑥̂𝑡 ∣ 𝑥̂𝑛𝑡−1
)

, (7)

and the IMMPF with uniform index sampling, for model (2), with
(

𝜆IMMPF
)

𝑡≥1
(

𝑥̂𝑡
)

=
(

𝜆IMMPF
)

𝑡≥1
(

𝑥𝑡, 𝑘𝑡, 𝑟𝑡
)

def
=

∑𝑁
𝑛=1 𝑤̄

𝑛
𝑡−1𝐾

𝜃 (𝑘𝑡 ∣ 𝑟𝑛𝑡−1
)

𝑀𝜃 (𝑥𝑡 ∣ 𝑥𝑛𝑡−1, 𝑘𝑡
)

𝛿
𝑅𝜃

(

𝑟𝑛𝑡−1 ,𝑘𝑡
)

(

𝑟𝑡
)

𝑁reg
∑𝑁
𝑙=1 𝑤̄

𝑙
𝑡−1𝐾

𝜃
(

𝑘𝑡 ∣ 𝑟𝑙𝑡−1
)

, (8)

where 𝛿𝑧 (⋅) is density of the Dirac measure at 𝑧. Note that Eq. (8) cannot 
be reduced to a mixture density over the particles, motivating the use 
of the more general SMIS framework.

Theorem 1.  Defining 𝑡 (𝜓)
def
=

∑𝑁
𝑛=1 𝑤̄

𝑛
𝑡 𝜓

(

𝑥̂𝑛𝑡
)

, and P𝑡 (𝜓) to be true 
posterior mean of some test function 𝜓 ∶  → R, respectively. Then under 
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the sufficient set of assumptions that |𝜓| is upper bounded, 𝜇𝑡 is absolutely 
continuous with respect to 𝜆𝑡, and the Radon–Nikodym derivative 𝜇𝑡𝜆𝑡  is 
finitely upper bounded: 

𝑡 (𝜓)
𝐿2
←←←←←←←←←←←←→ P𝑡 (𝜓) , (9)

as 𝑁 → ∞, implying that 𝑡 (𝜓) is a weakly consistent estimator of P𝑡 (𝜓).

Proof.  See Appendix  B for a proof. □

We are not the first to formalise particle filtering as a SMIS proce-
dure [28,29], see also [30] for a tutorial that introduces the well-known 
auxiliary particle filter [31] as an SMIS procedure. We extend Theorem 
1 to an equivalent result for the deterministic regime sampling case in 
Corollary  B.1.

3.2. Differentiable particle filtering

A diverse taxonomy of strategies exist to estimate the parameters of 
SSMs. We refer the readers to [18] for an overview of SMC approaches. 
Our problem differs from the classical cases in two respects: using 
neural networks, our parameter space is very high-dimensional; and 
with the flexibility we allow for, the latent system is not identifi-
able from the observations alone. With modern automatic differenti-
ation, the ubiquitous-in-machine-learning, gradient-based schemes are 
an attractive choice. They perform well when the parameter space is 
high-dimensional and generalise readily to specialised loss functions. 
However, standard SMC algorithms are not differentiable.

Differentiable particle filter (DPF) refers, in the literature, to any SMC 
filtering algorithm that is designed to return estimates of the gradients 
of its outputs. The first DPF [15] used the well known reparameterisa-
tion trick to differentiate sampling from the proposal. But it did not pass 
gradients through resampling, setting them to zero, so that gradients 
are not propagated over time-steps.

In [32], the first fully smoothly differentiable particle filter is pro-
posed. Their strategy is to find a differentiable transport map from 
the particle approximation of 𝑝(𝑥𝑡 ∣ 𝑦0∶𝑡−1) to 𝑝(𝑥𝑡 ∣ 𝑦0∶𝑡). This results 
in consistent gradient estimates. However, it is computationally costly 
and can suffer from numerical issues if not carefully tuned. We refer 
to this method as optimal transport resampling as the map chosen is an 
approximation of the entropy regularised Wasserstein-2 optimal map.

Several works [33–35] have explored applying REINFORCE [36] 
to differentiate through the discrete resampling steps. However all 
these papers opted to ignore the gradient due to REINFORCE due to 
high variance. In [37] it is proposed to apply REINFORCE separately 
to each resampled particle; however this is less generally applicable 
than optimal transport resampling. Its gradient estimates have been 
shown to be consistent [37,38] only for a restricted class of filters and 
functions of the filtering outputs.

The only prior work in differentiable filtering specifically concerned 
with regime-switching models is the RSDBPF [20]. The RSDBPF is a 
direct application of the biased DPF of [15] to the RSPF [9]. However, 
it does not attempt to learn the switching dynamic 𝑅𝜃 , 𝐾𝜃 and assumes 
these components are known a priori.

4. The differentiable interacting multiple model particle filter

The core algorithmic contribution of this work is to develop the 
IMMPF into a differentiable variant, the DIMMPF, so that it can be 
included into an end-to-end machine learning framework.
4 
Fig. 2. Graphical representation of our proposed switching dynamic. Blue nodes are 
input/outputs. Purple nodes are fully connected network layers with the specified 
activation. Yellow nodes are non-learned functions. The switching probability mass, 
𝐾𝜃 (𝑘𝑡+1 ∣ 𝑟𝑡

)

, is the value at the 𝑘𝑡+1th index of the model output 𝐾𝜃 .

4.1. Parameterising the model

For the dynamic and observation models, the choice is problem 
dependent, so we do not make any specific recommendations; the 
architectures used in our experiments can be found in Section 5.2. We 
take inspiration from long short term memory networks (LSTMs) [39] 
to design the parameterisation of 𝑅𝜃 . It is well known that SSMs, for 
which the latent process does not forget its past in some sense result 
in poorly performing SMC algorithms. Existing bounds on the stability 
of filtering algorithms typically rely on either conditions that lead to 
strong mixing [14], or a related drift condition [28]. Furthermore, there 
are SSMs that do not obey these assumptions for which it can be shown 
that their associated particle filter diverges exponentially (or worse) in 
mean squared error with 𝑇  [13].

For this reason, we include forget gates in our parameterisation of 
the switching dynamic; i.e.we set 𝑟𝑡 = 𝑟𝑡−1⊙𝑎+ 𝑏, where every element 
of vector 𝑎 is between 0 and 1, and 𝑏 is a function only of 𝑘𝑡. We desire 
that this has the effect of decreasing the weight of information from 
past states at each time-step before introducing information from the 
noisy 𝑘𝑡. Algebraically, the model can be expressed as, 
𝑟𝑡 = 𝑅𝜃

(

𝑘𝑡, 𝑟𝑡−1
)

= 𝜎
(

𝛩1𝑟𝑡−1
)

⊙ 𝜎
(

𝛩2𝑘′𝑡
)

⊙ 𝑟𝑡−1 + tanh
(

𝛩3𝑘′𝑡
)

,
(10a)

𝑟0 = 𝑅𝜃0
(

𝑘0
)

= 𝑅𝜃
(

𝑘0, 0⃗
)

, (10b)

𝐾 ′𝜃 (𝑘′𝑡 ∣ 𝑟𝑡−1
)

= |𝛩4tanh
(

𝛩5𝑟𝑡−1
)

| ⋅ 𝑘′𝑡 , (10c)

𝐾𝜃 (𝑘𝑡 ∣ 𝑟𝑡−1
)

=
𝐾 ′𝜃
𝑡
(

𝑘′𝑡 ∣ 𝑟𝑡−1
)

∑

𝑐∈ 𝐾 ′𝜃
(

𝑐′ ∣ 𝑟𝑡−1
) , (10d)

where 𝑘′𝑡 is the one hot encoding of 𝑘𝑡, ⊙ is the Hadamard product, and 
𝛩1∶5 are learned matrices, 0⃗ is the zero vector, and 𝜎 (⋅) is the sigmoid 
function. 𝐾𝜃

0  is represented by a learned vector of regime probabilities 
(see Fig.  2).

4.2. Estimating the gradient of the DIMMPF

The large majority of DPFs proposed [15,16,32,40,41] take deriva-
tives with respect to the proposal distribution’s parameters by the low 
variance reparameterisation trick. However, for our case where the 
state space has a discrete component no explicit reparameterisation 
function exists. Implicit reparameterisations for mixture models [42] 
have been shown to perform poorly in particle filtering [41], so we 
avoid their usage in favour of REINFORCE. Furthermore, the model 
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index, 𝑘𝑡, is categorical rather than atomic so continuous relaxations 
such as the one used in [43] do not apply.

Under the IMMPF proposal it is natural to combine the model selec-
tion steps and the resampling steps. We apply REINFORCE separately to 
each resampled weight as done in [37,38] but use a reparameterisation 
to sample 𝑀𝜃 (𝑥𝑡 ∣ 𝑥𝑡−1, 𝑘𝑡

)

, 

𝑤̃𝑛𝑡 =
𝑁
∑

𝑚=1
𝑤̄𝑚𝑡−1𝐾

𝜃 (𝑘𝑛𝑡 ∣ 𝑟
𝑚
𝑡−1

)

⊥
[

𝑀𝜃 (𝑥𝑛𝑡 ∣ 𝑥
𝑚
𝑡−1, 𝑘

𝑛
𝑡
)]

, (11a)

𝑤𝑛𝑡 =
𝑤̃𝑛𝑡𝐺

𝜃 (𝑦𝑡 ∣ 𝑥𝑛𝑡 , 𝑘
𝑛
𝑡
)

⊥
[

∑𝑁
𝑙=1 𝑤̄

𝑙
𝑡−1𝐾

𝜃 (𝑘𝑛𝑡 ∣ 𝑟
𝑙
𝑡−1

)

]

𝑁reg⊥
[

𝑤̃𝑛𝑡
] , (11b)

where we use ⊥ [⋅] to denote the stop gradient operator, which is 
defined to be the operation that is the identity on the forward pass, 
but sets the gradient of the enclosed quantity to zero. In modern auto-
differentiation libraries, this is easy to implement and computationally 
cheap by detaching the operand from the computation graph. We refer 
the reader to [44] for an expansive overview of Monte Carlo gradient 
estimation. 

Theorem 2.  The weighting function Eqs. (11a) and (11b), reduces to the 
same value as the weights obtained using the 𝜆IMMPF, Eq. (8), in algorithm 
1, on the forward pass.

Proof.  In the forward pass, Eq. (11b) simplifies to: 

𝑁reg𝑤
𝑛
𝑡 = 𝐺𝜃

(

𝑦𝑛𝑡 ∣ 𝑥
𝑛
𝑡 , 𝑘

𝑛
𝑡
)

𝑁
∑

𝑙=1
𝑤̄𝑙𝑡−1𝐾

𝜃 (𝑘𝑛𝑡 ∣ 𝑟
𝑙
𝑡−1

)

. (12)

Evaluating Eq. (8) for a given latent state gives: 
(

𝜆IMMPF
) (

𝑥𝑛𝑡 , 𝑘
𝑛
𝑡 , 𝑟

𝑛
𝑡
)

=
∑𝑁
𝑚=1 𝑤̄

𝑚
𝑡−1𝐾

𝜃 (𝑘𝑛𝑡 ∣ 𝑟
𝑚
𝑡−1

)

𝑀𝜃 (𝑥𝑛𝑡 ∣ 𝑥
𝑚
𝑡−1, 𝑘

𝑛
𝑡
)

𝑁reg
∑𝑁
𝑙=1 𝑤̄

𝑙
𝑡−1𝐾

𝜃
(

𝑘𝑛𝑡 ∣ 𝑟
𝑙
𝑡−1

)
. (13)

Then calculating 𝑤𝑡𝑛 as in line 6 of Algorithm 1 from Eq. (13), gives 
Eq. (12). □

Theorem 3.  Under the weights given in Eq.  (11); assuming the model com-
ponents are such that the proposal dominates the target; and the magnitudes 
of 𝑤𝑛𝑡 , ∇𝜃𝑤𝑛𝑡 , 𝜓 and ∇𝜃𝜓 are upper-bounded for all 𝑡 then, 

∇𝜃𝑡 (𝜓)
𝐿2
←←←←←←←←←←←←→ ∇𝜃P𝑡 (𝜓) (14)

as 𝑁 → ∞, implying that ∇𝜃𝑡 (𝜓) is a weakly consistent estimator of 
∇𝜃P𝑡 (𝜓).

Proof.  See Appendix  C for a proof. □

Our weight function, Eq.  (11), is not the unique estimator that 
applies REINFORCE separately to each resampled particle. We improve 
on the naïve choice, 

(

𝑤Naïve
)𝑛
𝑡 = 𝐺𝜃

(

𝑦𝑡 ∣ 𝑥𝑛𝑡 , 𝑘
𝑛
𝑡
)

𝑤̄
𝑎𝑛𝑡
𝑡−1

⊥
[

𝑤̄
𝑎𝑛𝑡
𝑡−1

]
⊥

[ 𝑁
∑

𝑙=1
𝑤̄𝑙𝑡−1𝐾

𝜃 (𝑘𝑛𝑡 ∣ 𝑟
𝑙
𝑡−1

)

]

, (15)

where 𝑎𝑛𝑡  is the index of the particle at time 𝑡 − 1 that particle 𝑛
at time 𝑡 has been propagated from, by, at each time-step, partially 
Rao-Blackwellising over the previous time-step. Only the REINFORCE 
gradient terms benefit from this Rao-Blackwellisation, reparameterised 
gradients track only through the ancestral path. We find experimen-
tally, in Table  1, that the Rao-Blackwellised estimator performs signifi-
cantly better than its naïve counterpart. The naïve estimator’s variance 
is such that it performs worse than the biased estimator that zeros out 
the REINFORCE terms.

The Rao-Blackwellisation comes at a computational cost; the density 
𝑀𝜃 (𝑥𝑛𝑡 |𝑥

𝑚
𝑡−1, 𝑘

𝑛
𝑡
) must be computed for every pair {𝑛, 𝑚} at an operation 

cost of  (

𝑁2) in the forward pass compared to the usual particle filter 
 𝑁  complexity. In practice these operations can be computed in 
( )

5 
parallel so the Rao-Blackwellised estimator, Eq.  (11), is only slightly 
slower to compute than the naïve estimator, Eq. (15). Furthermore, by 
Theorem  2, the Rao-Blackwellisation only affects the gradient estima-
tors, so we revert to the  (𝑁) algorithm during inference. See Table  2 
for our results.

We remark that the proof of Theorem  3, and its corollaries rely on 
the fact that, using the DIMMPF weights Eq.  (11), gradients are only 
taken with respect to the model components and not the proposal. 
For this reason, one cannot expect our estimator to provide a useful 
learning signal for the proposal process. In [37] the authors investigate 
a closely related estimator and are unable to find clear theoretical or 
experimental evidence that it does. Under our set-up the proposal has 
no extra parameters in addition to the model. Developing a practical 
gradient estimator that can learn an efficient proposal process remains 
an open problem.

4.3. Training the DIMMPF

Consider two approaches to train a particle filter when there is 
access to the ground truth latent state during training. The first is 
to estimate the latent state and minimise some distance between the 
estimator and the ground truth. The second is to maximise the joint 
likelihood of the observations and their associated ground truth latent 
state. We find the best results are obtained when optimising a loss 
that combined the two strategies. A related strategy is recommended 
in [15] where the optimisation objective is a combination of the MSE 
of filtering estimates and a loss on the measurement and observation 
models individually.

In our case, the MSE of filtering estimates is obtained by Algo-
rithm 2. To estimate the joint likelihood, we re-partition the model 
so that during training the available quantities {𝑥𝑡, 𝑦𝑡

} are taken as 
observations and {𝑟𝑡, 𝑘𝑡

} are the latent state estimated by filtering. 
Since the observations now depend on each other, this formulation 
does not strictly satisfy the usual definition of an SSM, described in 
Eq. (1). However, in particle filtering, the observations are treated as a 
sequence of non-random constants so the algorithm generalises freely 
to situations where the observations have arbitrary backwards-in-time 
interdependence. To account for this interdependence, we replace the 
conditional likelihood in Eq. (1), with 
𝑦̂𝑡 ∼ 𝐺̂

(

𝑦̂𝑡 ∣ 𝑥̂𝑡, 𝑦̂0∶𝑡−1
)

. (16)

We provide precise details on how we calculate these losses in Ap-
pendix  A.

Needing to run two filters incurs an extra computational cost. 
However, for the second filter the conditional likelihood only depends 
on the state through the discrete model index, so one can precompute 
all the conditional likelihoods for each choice of model index using 
GPU parallelism. Then the only neural network we need to evaluate 
per-particle during filtering is 𝑅𝜃 (𝑘𝑡, 𝑟𝑡−1

)

.
Formally, Theorem  3 does not prove the consistency of the gradients 

of either the losses we adopt, however the appropriate results follow 
as corollaries. See Corollaries  C.1 and C.2 for formal statements and 
proofs of the consistency of the gradients of the MSE and log-likelihood 
respectively. When we calculate the log-likelihood of {𝑥𝑡, 𝑦𝑡

} using 
the re-partitioned model, the state dynamics have no reparameterised 
component. In [37] it is shown, for this case, that the resultant gradient 
estimator is unbiased. It is closely related to the Rao-Blackwellised 
recursion obtained in [45].

4.4. The full algorithm and practical considerations

We present the full DIMMPF algorithm3 in pseudo-code in Algo-
rithm 2. It can be checked that the filtering loop of Algorithm 2 is 

3 Our implementation, including the code to run the experiments in this 
paper can be found at https://github.com/John-JoB/DIMMPF.

https://github.com/John-JoB/DIMMPF
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equivalent, in the forward pass, to running Algorithm 1 with target 
(6) and proposal (8), with the model indices deterministically chosen 
rather than sampled uniformly. When computing the data-likelihood, 
Algorithm 2 is modified such that the distribution of 𝑥𝑡 is accounted 
for in the weights instead of being sampled from, see Appendix  A for 
detail.

In practice, it is common to use a variance-reduced scheme to 
resample the particle indices in lieu of multinomial sampling. One such 
scheme is the systematic resampling of [46] and its closely related 
variants, which are found to work well empirically. The increased 
stability offered by systematic resampling is of increased importance 
in the context of DPFs, where it stabilises gradient updates as well 
as the forward pass [47]. However, under systematic resampling the 
particles are no longer sampled i.i.d., so the central limit theorem used 
to prove Theorem  1 no longer holds. We make the recommendation that 
practitioners use systematic resampling based on our empirical results. 

Algorithm 2 Differentiable Interacting Multiple Model Particle Filter. 
All operations indexed by 𝑛 should be repeated for all 𝑛 ∈ {1,… , 𝑁}
and those by 𝑞 for 𝑞 ∈ {

1,… , 𝑁reg
}

.

Input: priors 𝑀𝜃
0   dynamic models 𝑀𝜃

  regime prior 𝐾𝜃
0   switching dynamic 𝐾𝜃

  observation models 𝐺𝜃   encoding functions 𝑅𝜃
  time length 𝑇   particle count 𝑁

 loss coefficient 𝜆   observations 𝑦0∶𝑇
  ground truth 𝑥̃0∶𝑇   number of regimes 𝑁reg

Output: unormalised weights 𝑤1∶𝑁
0∶𝑇   particle locations 

{

𝑥1∶𝑁0∶𝑇 , 𝑘
1∶𝑁
0∶𝑇 , 𝑟

1∶𝑁
0∶𝑇

}

1: 𝑘𝑛0 ← ⌊

𝑛𝑁reg
𝑁 ⌋

2: Sample 𝑥𝑛0 ∼𝑀𝜃
0
(

𝑥𝑛0 ∣ 𝑘
𝑛
0
)

3: 𝑟𝑛0 = 𝑅𝜃
(

𝑘𝑛0, 0⃗
)

4: 𝑤𝑛0 = 𝐺𝜃
(

𝑦0 ∣ 𝑥𝑛0, 𝑘
𝑛
0
)

5: 𝑤̄𝑛0 =
𝑤𝑛0

∑𝑁
𝑚=1 𝑤

𝑚
0

6: for 𝑡 = 1 to 𝑇  do 
7: 𝑘𝑛𝑡 ← ⌊

𝑛𝑁reg
𝑁 ⌋

8: 𝑤̂𝑛,𝑞𝑡 ←
𝑤̄𝑛𝑡−1𝐾

𝜃
(

𝑞|𝑟𝑛𝑡−1
)

∑𝑁
𝑚=1 𝑤̄

𝑚
𝑡−1𝐾

𝜃
(

𝑞|𝑟𝑚𝑡−1
)

9: Sample ancestor indices 𝑎𝑛𝑡 = 𝑚 with probability equal to 𝑤̂𝑚,𝑘
𝑛
𝑡

𝑡

10: Sample 𝑥𝑛𝑡 ∼𝑀𝜃
(

𝑥𝑛𝑡 ∣ 𝑥
𝑎𝑛𝑡
𝑡−1, 𝑘

𝑛
𝑡

)

11: 𝑟𝑛𝑡 ← 𝑅𝜃
(

𝑘𝑛𝑡 , 𝑟
𝑎𝑛𝑡
𝑡−1

)

12: Calculate 𝑤𝑛𝑡  from Eq.  (11)
13: 𝑤̄𝑛𝑡 =

𝑤𝑛𝑡
∑𝑁
𝑚=1 𝑤

𝑚
𝑡

14: end for
15: return 𝑤1∶𝑁

0∶𝑇 , 𝑥
1∶𝑁
0∶𝑇 , 𝑘

1∶𝑁
0∶𝑇 , 𝑟

1∶𝑁
0∶𝑇

5. Numerical experiments

In this section, we present the results from a set of numerical 
experiments.

5.1. Simulated environments

We repeat the test environment of [9,20], in which the dynamic and 
observation models of each regime are uni-variate and Gaussian. 
𝑀0

(

𝑥0
)

=  (−0.5, 0.5) , (17a)

𝑀
(

𝑥𝑡|𝑥𝑡−1, 𝑘𝑡
)

= 
(

𝑎𝑘𝑡𝑥𝑡−1 + 𝑏𝑘𝑡 , 𝜎
2
)

, (17b)

𝐺
(

𝑦𝑡|𝑥𝑡, 𝑘𝑡
)

= 
(

𝑎𝑘𝑡
√

|𝑥𝑡| + 𝑏𝑘𝑡 , 𝜎
2
)

, (17c)
[

𝑎 ,… , 𝑎
]

= −0.1,−0.3,−0.5,−0.9, 0.1, 0.3, 0.5, 0.9 , (17d)
1 8 [ ]

6 
[

𝑏1,… , 𝑏8
]

= [0,−2, 2,−4, 0, 2,−2, 4] , (17e)

𝜎2 = 0.1 . (17f)

This model poses some challenges to state estimation. Because the 
observation location depends on the state only through its absolute 
value, it is impossible to estimate the state using the observations alone. 
Furthermore, the coefficients 𝑎𝑖, 𝑏𝑖 are chosen so that it is hard to 
identify the current regime over short sequences, for example, regimes 
1 and 5 have identical data-likelihoods when each is run in isolation. 
It is therefore required that all of the observation model, the dynamic 
model and the switching dynamic are well-learned.

We include three different switching dynamics. The first is a Markov 
switching system where the probability of remaining in the same 
regime is 0.8; switching to the next regime, with regimes 9 and 1 iden-
tified, is 0.15; and all other regimes have probability 1

120 . Algebraically: 

𝐾
(

𝑘𝑡|𝑘0∶𝑡−1
)

=
(

𝐤′𝑡−1
)𝑇 𝐵𝐤′𝑡 , (18a)

𝐵 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0.8 0.15 𝜌 … 𝜌
𝜌 0.8 0.15 … 𝜌
⋮ ⋱ ⋮
𝜌 𝜌 … 0.8 0.15

0.15 𝜌 … 𝜌 0.8

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (18b)

𝜌 = 1
120

, (18c)

where 𝑘′𝑡 are the one-hot encodings of the regime index.
In the second setting, the regimes follow a Pólya-urn distribution 

where the sampled regimes are more likely to appear at later time-steps: 

𝐾
(

𝑘𝑡|𝑘0∶𝑡−1
)

=
1 +

∑𝑡−1
𝑠=0 1

(

𝑘𝑠 = 𝑘𝑡
)

8 + 𝑡
. (19)

The Pólya-urn setting has frequent switching and often the distribution 
of model indices looks close to uniform, making it simpler to approx-
imate but harder to perform inference on than the Markov setting. In 
both cases we set 𝐾0

(

𝑘0
)

= 1
8 .

To demonstrate the versatility of our algorithm, we introduce a 
more challenging switching dynamic than has been used in previous 
work. For the third setting, the time between regime switches is approx-
imately Erlang distributed. The order of the Erlang distribution is equal 
to the number of periods for which the system has been in the current 
regime. Once the Erlang distributed period is finished, the system jumps 
randomly to one of the two adjacent regimes. However, we include a 
small probability that at any time-step the system jumps to any regime. 
This system is most simply expressed algebraically as 

𝑚𝑡 ∼ Bernoulli (0.01) , (20a)

𝑛𝑡 ∼ Bernoulli (0.2) , (20b)

𝑐
(

𝑘0∶𝑡, 𝑘
)

=
𝑡−1
∑

𝑠=0
1
((

𝑘𝑠 = 𝑘
)

∧
(

¬
(

𝑘𝑠+1 = 𝑘
)

∨
(

𝑚𝑠 = 1
)))

, (20c)

𝑙𝑡 =

⎧

⎪

⎨

⎪

⎩

𝑙𝑡−1, 𝑛𝑡 = 0 ,
𝑙𝑡−1 − 1, ¬

(

𝑙𝑡−1 = 0
)

∧
(

𝑛𝑡 = 1
)

,
𝑐
(

𝑘0∶𝑡, 𝑘𝑡
)

,
(

𝑙𝑡−1 = 0
)

∧
(

𝑛𝑡 = 1
)

,

(20d)

𝛼𝑡 =
(

𝑛𝑡 = 1
)

∧
(

𝑙𝑡−1 = 0
)

, (20e)

𝐾
(

𝑘𝑡|𝑘0∶𝑡−1
)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
𝑁reg

, 𝑚𝑡 = 1 ,

1
(

𝑘𝑡 = 𝑘𝑡−1
)

,
(

𝑚𝑡 = 0
)

∧ ¬𝛼𝑡 ,
(

0.61
(

𝑘𝑡=𝑘𝑡−1+1
(

mod 𝑁reg
))

+0.41
(

𝑘𝑡=𝑘𝑡−1−1
(

mod 𝑁reg
))

)

,
(

𝑚𝑡 = 0
)

∧ 𝛼𝑡 .

(20f)

We choose this dynamic because of its complexity to learn. There are 
both strong dependence between the index at successive time-steps, like 
the Markov setting; and long term dependencies, like the Pólya setting.
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Table 1
Filtering accuracy for the discussed algorithms. Reported values are the achieved mean 
squared filtering error and averaged across 20 independent training runs.
 Algorithm Markov MSE Pólya MSE Erlang  
 Transformer (baseline) 1.579 ± 0.169 1.508 ± 0.112 1.614 ± 0.160 
 LSTM (baseline) 0.732 ± 0.083 0.667 ± 0.053 0.978 ± 0.103 
 RLPF (baseline) 0.536 ± 0.143 0.509 ± 0.071 0.771 ± 0.110 
 DIMMPF-OT (baseline) 0.891 ± 0.128 0.866 ± 0.134 0.873 ± 0.122 
 DIMMPF-N (baseline) 0.751 ± 0.0694 0.741 ± 0.071 0.742 ± 0.072 
 DIMMPF (ours) 𝟎.𝟓𝟎𝟎 ± 𝟎.𝟏𝟎𝟎 𝟎.𝟒𝟗𝟎 ± 𝟎.𝟎𝟓𝟐 𝟎.𝟕𝟏𝟐 ± 𝟎.𝟏𝟏𝟓 
 IMMPF (oracle) 0.274 ± 0.019 0.408 ± 0.014 0.473 ± 0.025 

Table 2
Average computation times per training epoch (10 batches of 100 parallel filters of 
200 particles each) and testing run (1 batch of 500 parallel filters of 2000 particles 
each) on the Pólya experiment.
 Algorithm Av. train epoch time (s) Av. test time (s) 
 Transformer (baseline) 0.182 0.00310  
 LSTM (baseline) 𝟎.𝟎𝟏𝟒𝟓 𝟎.𝟎𝟎𝟎𝟕𝟗𝟐  
 RLPF (baseline) 5.98 0.814  
 DIMMPF-OT (baseline) 425 Out of memory  
 DIMMPF-N (baseline) 8.56 0.773  
 DIMMPF (Ours) 10.5 0.759  

5.2. Experiment details

In addition to the our DIMMPF, we present a number of baseline ap-
proaches. The problem of sequential state estimation can be described 
as learning to predict a sequence of latent states from a sequence 
of observations, so any available sequence-to-sequence techniques can 
apply. We choose to use a transformer [48] and an LSTM [39] as 
baseline approaches as they represent the state-of-the-art in sequence-
to-sequence prediction. The transformer is encoder only and the LSTM 
is unidirectional so that only past information is used. We also compare 
to the regime learning particle filter (RLPF), a preliminary version 
of our methodology that we presented in the conference paper [23]. 
Finally we include two variants on the DIMMPF: the DIMMPF-OT that 
uses a transport map based resampler [32] to be differentiable, instead 
of the gradient estimator developed in Section 4.2; and the DIMMPF-N 
that uses the  (𝑁) naïve gradient estimator, Eq. (15).

All filtering based models parameterise both the measurement and 
dynamic models with fully connected neural networks of two hidden 
layers containing 11 nodes each. During training we use a population of 
200 total particles, which we increase to 2000 for testing. This is reduced 
to 80 particles in training and 800 in testing for the DIMMPF-OT due 
to memory constraints. We generate 2000 trajectories of 51 time-steps 
and use them in ratio 2 ∶ 1 ∶ 1 for training, validation and testing, 
respectively. We train in mini-batches of 100 trajectories, but test on the 
full 500 trajectory batches. Each experiment is repeated 20 times with 
independent data generations. All experiments are performed using an 
NVIDA RTX 3090 GPU.

5.3. Results

We present the main results in Table  1, and the computation times 
in Table  2. The DIMMPF is the best performing algorithm in all exper-
iments. The filtering approaches far outperform the generic sequence-
to-sequence techniques in mean accuracy, however, the LSTM is com-
putationally the cheapest. In training, the DIMMPF is faster than the 
DIMMPF-OT. But, it is slower than the DIMMPF-N due requiring more 
terms to be computed. The RLPF further saves time through ignoring 
gradient terms that the DIMMPF and DIMMPF-N evaluate. During in-
ference, the DIMMPF and DIMMPF-N are equivalent so achieve similar 
timings.
7 
6. Conclusions

In this paper, we have presented a novel differentiable particle filter, 
the DIMMPF, that addresses the problem of learning to estimate the 
state of a regime switching state space process. Our algorithm improves 
over the previous state-of-the-art, the RSDBPF, in three respects. Firstly, 
the RSDBPF required that the switching dynamic be fully known a 
priori, whereas our algorithm can learn it from data. Secondly, the 
DIMMPF takes account of the assigned regime when resampling par-
ticles, thereby concentrating computation on more promising regions. 
Thirdly, the gradient estimates returned by the DIMMPF are consistent.

We evaluated our algorithm on a set of numerical experiments. 
The three settings, Markov, Pólya, and Erlang are designed to test 
the learning of short-term strong dependency, long-range weak depen-
dency, and both simultaneously, respectively. The proposed DIMMPF 
leads to the smallest filtering errors on all three settings. The DIMMPF 
is computationally expensive during training, both compared to its 
simpler variants and especially out-of-the-box sequence-to-sequence 
techniques. However, during inference it achieves a similar speed to 
the other DPF approaches.

The key limitations of this work are that the DIMMPF is only 
capable of learning model parameters and not, additionally, an efficient 
proposal process; and that the number of regimes must be known. We 
leave addressing these limitations to future work.

Another important direction for future work is towards more chal-
lenging environments, including real-world data. We propose a simple 
architecture to parameterise the switching dynamic; future work might 
consider more advanced design patterns such as attention.
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Appendix A. Calculating the losses

Mean squared error loss: The mean squared error of the filtering 
estimates is calculated as follows, with 𝑥̃𝑡 denoting the ground truth 
latent state.

MSE = 1
𝑇 + 1

𝑇
∑

𝑡=0

( 𝑁
∑

𝑛=1
𝑤̄𝑛𝑡

(

𝑥𝑛𝑡 − 𝑥̃𝑡
)

)2

. (A.1)

Data-likelihood loss: Calculating the data-likelihood requires a modi-
fication to the inputs of Algorithm 2. We replace the observation model, 
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𝐺𝜃
(

𝑦𝑡 ∣ 𝑥𝑛𝑡 , 𝑘
𝑛
𝑡
)

, with the marginal data-likelihood conditioned on the 
previous time-step, 
𝐺𝜃

(

𝑦𝑡 ∣ 𝑥̃𝑡, 𝑘𝑛𝑡
)

𝑀𝜃 (𝑥̃𝑡 ∣ 𝑥̃𝑡−1, 𝑘𝑛𝑡
)

. (A.2)

In practice we do not track a latent state 𝑥𝑡, but the same effect can 
be achieved in Algorithm 2, by setting 𝑀𝜃 (𝑥𝑡|𝑥𝑡−1, 𝑘𝑡

) to be uniform 
over some set that does not depend on 𝑥𝑡−1 or 𝑘𝑡. Then the negative 
log data-likelihood is estimated as 

data-likelihood = −
𝑇
∑

𝑡=0
log

𝑁
∑

𝑛=1
𝑤𝑛𝑇 − (𝑇 + 1) log𝑁 . (A.3)

Appendix B. Proof of Theorem  1

The following proof is based, in part, on the proofs found in Chap-
ters 8 and 11 of [13].
E
[

(

𝑡 (𝜓) − P𝑡 (𝜓)
)2
]

= E
[

(

𝑡 (𝜓) − ∫
𝜇𝑡

(

𝑑𝑥̂𝑡
)

𝜓
(

𝑥̂𝑡
)

+ ∫
𝜇𝑡

(

𝑑𝑥̂𝑡
)

𝜓
(

𝑥̂𝑡
)

− P𝑡 (𝜓)
)2

]

≤ 2

{

E
[

(

𝑡 (𝜓) − ∫
𝜇𝑡

(

𝑑𝑥̂𝑡
)

𝜓
(

𝑥̂𝑡
)

)2
]

+ E
[

(

∫
𝜇𝑡

(

𝑑𝑥̂𝑡
)

𝜓
(

𝑥̂𝑡
)

− P𝑡 (𝜓)
)2

]}

.

(B.1)

The first term can be bounded using the standard convergence result 
for an auto-normalised importance sampler. For some factor 𝑐𝑡 that is 
independent of 𝑁 , 

E

[

(

𝑡 (𝜓) − ∫
𝜇𝑡

(

𝑑𝑥̂𝑡
)

𝜓
(

𝑥̂𝑡
)

)2
]

≤ E

[

‖

‖

‖

‖

‖

(

𝑡 (𝜓) − ∫
𝜇𝑡

(

𝑑𝑥̂𝑡
)

𝜓
(

𝑥̂𝑡
)

)

‖

‖

‖

‖

‖

2

∞
∣ 𝑥̂1∶𝑁𝑡−1 , 𝑤

1∶𝑁
𝑡−1

]

≤ 1
𝑁
𝑐𝑡 ,

(B.2)

where we have used the fact that the particles are conditionally i.i.d. 
given the particles at the previous time-step. For 𝑡 = 0, the second term 
in Eq. (B.1) is zero, so MSE convergence is guaranteed i.e.Theorem  1 
holds for 𝑡 = 0. For 𝑡 > 0, we may bound the MSE by induction with 
𝑡 = 0 as the base case. To perform the inductive step we first introduce 
the identity: 

P𝑡−1
(

∫
𝜓
(

𝑥̂𝑡
)

𝑝
(

𝑑𝑥̂𝑡 ∣ 𝑥̂𝑡−1, 𝑦̂𝑡
)

)

= P𝑡 (𝜓) , (B.3)

which may be proved using basic probability rules and the conditional 
independence structure of the SSM (Eq. (1)). One may write: 

∫
𝜇𝑡

(

𝑑𝑥̂𝑡
)

𝜓
(

𝑥̂𝑡
)

=
𝑁
∑

𝑖=1
𝑤̄𝑖𝑡−1 ∫

𝜓
(

𝑥̂𝑡
)

𝑝
(

𝑑𝑥̂𝑡 ∣ 𝑥̂𝑖𝑡−1, 𝑦̂0∶𝑡
)

= 𝑡−1
(

∫
𝜓
(

𝑥̂𝑡
)

𝑝
(

𝑑𝑥̂𝑡 ∣ 𝑥̂𝑡−1, 𝑦̂𝑡
)

)

.

(B.4)

This implies, using Eq. (B.3), that the second term in (B.1) is bounded 
by a term of order 𝑁−1 assuming that Theorem  1 holds for 𝑡−1. Then, 
the MSE becomes the sum of two bounded by order 𝑁−1 terms. So, it is 
bounded by 1

𝑁 𝑐
′
𝑡  for some constant 𝑐′𝑡  and therefore the MSE converges 

to zero in the large sample size limit.

Corollary B.1.  The IMMPF with deterministic sampling exhibits 𝐿2

convergence under the same conditions as Theorem  1, 
(

Det
)

𝑡 (𝜓)
𝐿2
←←←←←←←←←←←←→ P𝑡 (𝜓) , (B.5)

implying the weak consistency of (Det
)

𝑡 (𝜓).

In the deterministic case the particles are no longer i.i.d given the 
previous particles, so we can no longer apply the convergence result 
for the auto-normalised importance sampler to obtain Eq.  (B.2).

The IMMPF sampling algorithm is equivalent to scheme N1 in [27] 
where each sampling distribution in repeated for 𝑁

𝑁reg
 copies. Follow-

ing the derivation in Appendix C, Option 3 of [27] we can see this 
8 
sampling stratergy is unbiased. Furthermore, they give the variance of 
the unnormalised sum of weighted samples for a zero mean quantity, 

𝜓̂
def
=

𝑁
∑

𝑛=1
𝑤 (𝑥𝑛)𝜓 (𝑥𝑛) , (B.6)

to be 

Var [𝜓̂] = 𝑁
𝑁reg

𝑁reg
∑

𝑘=1
E
[

(𝑤 (𝑥)𝜓 (𝑥))2 |𝑘
]

≤ ‖𝑤‖2∞ ‖𝜓‖2∞ . (B.7)

Then by Slutsky’s theorem, the asymptotic variance of the proceeding 
auto-normalised importance sampler is 

Var
[

𝜓̂
∑𝑁
𝑚=1𝑤 (𝑥𝑚)

]

→
E
[

(

𝑤
(

𝑥𝑘
)

𝜓
(

𝑥𝑘
))2

]

𝑁E [𝑤 (𝑥)]2
. (B.8)

Which is exactly the same asymptotic variance one obtains using uni-
form sampling. This convergence result can be substituted for that of 
the usual auto-normalised importance sampler in (B.2) and the rest of 
the proof is identical to that of Theorem  1.

We remark that although the asymptotic variances of the auto-
normalised importance samplers for the deterministic, Eq. (B.8), and 
uniform cases are identical, this does not imply the variances of the 
filtering estimates are.

Appendix C. Proof of Theorem  3

This result and the attached corollaries apply to the deterministic 
sampling case by applying Corollary  B.1 wherever their proofs use 
Theorem  1 for the uniform case. Throughout this derivation, if the 
distribution an expectation is taken over is not specified it may be 
assumed to be the full posterior 𝑝 (𝑥𝑇 , 𝑘𝑇 , 𝑟𝑇 |𝑦0∶𝑇

)

.
Consider generating 𝑁 → ∞ trajectories from the bootstrap par-

ticle filter with, Eq. (7), for our system, Eq. (2), with 𝑀𝜃 (𝑥𝑡|𝑥𝑡−1
)

sampled by the reparameterisation trick. Using the surrogate objectives 
of [49], we can directly write the appropriate gradient estimator for this 
stochastic program as:

∇𝜃 E
Boot

[ 𝑁
∑

𝑛=1
𝛺𝑛
𝑇𝜓

(

𝑥𝑛𝑇
)

]

= E
Boot

[

∇𝜃

𝑁
∑

𝑛=1
𝛺𝑛
𝑇𝜓

(

𝑥𝑛𝑇
)

+
𝑁
∑

𝑛=1
𝛺𝑛
𝑇𝜓

(

𝑥𝑛𝑡
)

∇𝜃

𝑁
∑

𝑚=1

(𝑇−1
∑

𝑡=0

[

log𝛺𝑚
𝑡 + log𝐾𝜃

(

𝑘𝑚𝑡+1|𝑟
𝑎𝑚𝑡
𝑡

)]

+ log𝐾𝜃
0
(

𝑘𝑚0
)

) ]

, (C.1)

for ancestor variables 𝑎0∶𝑁0∶𝑇−1 such that 𝑎𝑛𝑡  is the index at time 𝑡 that 
particle 𝑛 at time 𝑡 + 1 descends from and 

𝛺𝑛
𝑡
def
=

𝐺𝜃
(

𝑦𝑡|𝑥𝑛𝑡 , 𝑘
𝑛
𝑡
)

∑𝑁
𝑙=1 𝐺𝜃

(

𝑦𝑡|𝑥𝑙𝑡 , 𝑘
𝑙
𝑡
)
. (C.2)

Taking the limit 𝑁 → ∞ and applying the consistency result of Theorem 
1 then:

∇𝜃E
[

𝜓
(

𝑥𝑡
)]

= E
[

∇𝜃𝜓
(

𝑥𝑡
)

+ 𝜓
(

𝑥𝑡
)

∇𝜃

(

log𝐾𝜃
0
(

𝑘0
)

− log 𝑝
(

𝑦0∶𝑇
)

+

𝑇
∑

𝑡=0

[

log𝐺𝜃
(

𝑦𝑡|𝑥𝑡, 𝑘𝑡
)

+ 1𝑡≥1 log𝐾𝜃 (𝑘𝑡, 𝑟𝑡−1
)

] )]

, (C.3)

where 1𝑡≥1 is defined to be equal to 0 for 𝑡 = 0 and 1 otherwise. Since 
our proposal Eq. (8) contains no additional parameters, if our gradient 
estimator is asymptotically equal to Eq.  (C.3), then by Theorem  1 it is 
consistent. Applying Theorems  1 and 2, 

∇𝜃
𝑁
∑

𝑛=1
𝑤̄𝑛𝑇𝜓

(

𝑥𝑛𝑇
) 𝐿2
←←←←←←←←←←←←→ E

𝑥̂𝑇 ∼𝑝
(

𝑥̂𝑇 |𝑦0∶𝑇
)

[

∇𝜃𝜓
(

𝑥𝑇
)

+ 𝜓
(

𝑥𝑡
)

∇𝜃 log
(

𝑤̄𝑇
)]

.

(C.4)
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Defining 𝑍𝑇
def
=

∑𝑇
𝑡=0 log

∑𝑁
𝑛=1𝑤

𝑛
𝑡 − (𝑇 + 1) log𝑁 ,

E
𝑥̂𝑇 ∼𝑝

(

𝑥̂𝑇 |𝑦0∶𝑇
)

[

𝜓
(

𝑥𝑇
)

∇𝜃 log 𝑤̄𝑇
]

=

−E
[

𝜓
(

𝑥𝑇
)]

∇𝜃
(

𝑍𝑇 −𝑍𝑇−1
)

+ E
𝑥̂𝑇 ∼𝑝

(

𝑥̂𝑇 |𝑦0∶𝑇
)

[

𝜓
(

𝑥𝑇
)

∇𝜃

(

log𝐺𝜃 (𝑦𝑇 ∣ 𝑥𝑇 , 𝑘𝑇
)

+ 1
𝑝
(

𝑥̂𝑇 ∣𝑦0∶𝑇−1
) E
𝑥̂𝑇−1∼𝑝

(

𝑥̂𝑇−1 |𝑦0∶𝑇−1
)

[

𝑝
(

𝑥̂𝑇 ∣ 𝑥̂𝑇−1
) (

log 𝑤̄𝑇−1 + log𝐾𝜃 (𝑘𝑇 ∣ 𝑟𝑇−1
))]

)]

(C.5)
= −E

[

𝜓
(

𝑥𝑇
)]

∇𝜃𝑍𝑇

+E
[

𝜓
(

𝑥𝑇
)

∇𝜃

(

log𝐾𝜃
0

(

𝑘0
)

+
𝑇
∑

𝑡=0
log𝐺𝜃 (𝑦𝑡|𝑥𝑡, 𝑘𝑡

)

+ 1𝑡≥1 log𝐾𝜃 (𝑘𝑡|𝑟𝑡−1
)

)]

, (C.6)

where we have derived the final expression by a recursive application 
of Slutsky’s theorem. Note that we cannot marginalise over the past 
time-steps in the outer expectation since 𝑥𝑇  is a function of all 𝑥0∶𝑇−1.

∇𝜃𝑍𝑇
𝐿2

←←←←←←←←←←→ E
[

∇𝜃

(

log𝐾𝜃
0

(

𝑘0
)

+
𝑇
∑

𝑡=0
log𝐺𝜃 (𝑦𝑡|𝑥𝑡, 𝑘𝑡

)

+ 1𝑡≥1 log𝐾𝜃 (𝑘𝑡|𝑟𝑡−1
)

)]

(C.7)

= ∇𝜃 log 𝑝
(

𝑦0∶𝑇
)

, . (C.8)

Combining (C.8), (C.4) and (C.6) we directly obtain (C.3) so our gradi-
ent estimator is consistent. We have proved that estimates of gradients 
of expectations for bounded functions, by Theorem  1, converges in the 
𝐿2 sense to the true expectation under the posterior. 

Corollary C.1.  Under the same assumptions as Theorem  3 the DIMMPF 
estimate of the gradient of the MSE of a bounded function is weakly 
consistent. Precisely, for a true state 𝑥̃𝑇 , 

∇𝜃

( 𝑁
∑

𝑛=1
𝑤̄𝑛𝑇𝜓

(

𝑥𝑛𝑇
)

− 𝜓
(

𝑥̃𝑇
)

)2
𝐿2
←←←←←←←←←←←←→ ∇𝜃

(

E
[

𝜓
(

𝑥̃𝑇
)]

− 𝜓
(

𝑥̃𝑇
))2 . (C.9)

This result is trivially extended to an average over time-steps and batched 
trajectories due to the linearity of the gradient operator.

Proof.  Define 𝜓̃ (

𝑥𝑛𝑇
) def
= 𝜓

(

𝑥𝑛𝑇
)

− 𝜓
(

𝑥̃𝑇
)

. 

∇𝜃

( 𝑁
∑

𝑛=1
𝑤̄𝑛𝑇𝜓

(

𝑥𝑛𝑇
)

− 𝜓
(

𝑥̃𝑇
)

)2

= 2

( 𝑁
∑

𝑛=1
𝑤̄𝑛𝑇 𝜓̃

(

𝑥𝑛𝑡
)

)

∇𝜃

( 𝑁
∑

𝑛=1
𝑤̄𝑛𝑇 𝜓̃

(

𝑥𝑛𝑇
)

)

(C.10)

Applying Theorems  1 and 3, as well as Slutsky’s theorem we therefore 
have:

∇𝜃

( 𝑁
∑

𝑛=1
𝑤̄𝑛𝑡 𝜓

(

𝑥𝑛𝑇
)

− 𝜓
(

𝑥̃𝑇
)

)2
𝐿2
←←←←←←←←←←←←→ 2E

[

𝜓̃
(

𝑥𝑛𝑇
)]

∇𝜃E
[

𝜓̃
(

𝑥𝑛𝑇
)]

= ∇𝜃
(

E
[

𝜓
(

𝑥𝑇
)]

− 𝜓
(

𝑥̃𝑇
))2 (C.11)

For our case, Eq. (A.1), 𝜓 is the identity function, which is not bounded. 
So, formally we have not proved convergence. However, one could 
instead take 𝜓 to be an arbitrarily wide rectangular function for a 
formally consistent estimator. □

Corollary C.2.  When the weights and their gradient are upper-bounded, 
the estimate of the gradient of the log-likelihood, is consistent. I.e.
𝑇
∑

𝑡=0
∇𝜃𝑍𝑇

𝐿2
←←←←←←←←←←←←→ ∇𝜃 log 𝑝

(

𝑦0∶𝑇
)

. (C.12)

Proof.  This result is directly implied by Eq. (C.8). For the data-
likelihood loss, ∑𝑇 ∇ 𝑍 = −∇  , by Eq.  (A.3). □
𝑡=0 𝜃 𝑇 𝜃 data-likelihood

9 
Data availability

No data was used. The code is may be accessed on Github from a 
link in the paper.
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